Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 203-210    DOI: 10.11901/1005.3093.2022.076
  研究论文 本期目录 | 过刊浏览 |
聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能
王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏()
浙江理工大学材料科学与工程学院 杭州 310018
Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber
WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong()
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
引用本文:

王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
Gang WANG, Leilei DU, Ziqiang MIAO, Kaicheng QIAN, Xiangbowen DU, Zeting DENG, Renhong LI. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. Chinese Journal of Materials Research, 2023, 37(3): 203-210.

全文: PDF(5756 KB)   HTML
摘要: 

在碳纤维表面自聚合沉积多巴胺对其改性,制备出碳纤维增强尼龙6复合材料(CF/PA6)。使用扫描电镜(SEM)、原子力显微镜(AFM)、接触角测量仪、傅里叶红外光谱(FTIR)以及X射线光电子能谱仪(XPS)等手段表征碳纤维的表面形貌、粗糙度、润湿性和化学结构,研究聚多巴胺(PDA)沉积时间对复合材料界面力学性能的影响。结果表明:经过改性处理的碳纤维表面被一层均匀的PDA薄膜覆盖,显著提高碳纤维的表面活性、表面粗糙度和化学键能,也极大地提高碳纤维与尼龙6树脂基体之间的界面相容性。PDA沉积16 h的复合材料其界面结合强度最高,层间剪切强度达到31.7 MPa比改性前提高72.3%,弯曲强度达到308.2 MPa比改性前提高56.9%。

关键词 复合材料CF/PA6复合物浸渍法聚多巴胺界面结合强度表面改性    
Abstract

Carbon fiber was surface modified with dopamine via self-polymerizing deposition process, then the polyamide 6-based composites (CF/PA6) were prepared with the modified carbon fiber as reinforcement. The morphology, roughness, wettability and chemical construction of carbon fiber were characterized by scanning electron microscope (SEM), atomic force microscope (AFM), contact angle measuring device, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS). The effect of deposition time of polydopamine (PDA) on the interface mechanical properties of the composites was also investigated. The results show that the surface of the modified carbon fiber was covered by a uniform PDA film, which significantly increased the surface activity, surface roughness and chemical bond energy of the carbon fiber, and greatly improved the interfacial compatibility between the carbon fiber and polyamide 6 matrix. The optimal PDA deposition time for the modification of carbon fiber was 16h, correspondingly, with the optimally modified carbon fiber as reinforcement, the interlaminar shear strength and bending strength of composites reached 31.7 MPa and 308.2 MPa, which was 72.3% and 56.9% higher respectively than those of the ones reinforced with the blank carbon fiber.

Key wordscomposite    CF/PA6 composite    impregnation    polydopamine    interfacial bonding strength    surface modification
收稿日期: 2022-01-26     
ZTFLH:  TB332  
基金资助:国家自然科学基金(21872123);国家自然科学基金(22172143)
通讯作者: 李仁宏,副教授,lirenhong@zstu.edu.cn,研究方向为催化纤维材料和氢能源材料
Corresponding author: LI Renhong, Tel: 13858043885, E-mail: lirenhong@zstu.edu.cn
作者简介: 王 刚,男,1997年生,硕士生
图1  UCF、PDA和PDA-UCF的红外光谱
图2  UCF、PDA-UCF-12 h、PDA-UCF-14 h、PDA-UCF-16 h和PDA-UCF-18 h的SEM照片
图3  复合材料的层间剪切强度力与位移曲线、层间剪切强度、弯曲强度力与位移曲线和弯曲强度
图4  碳纤维表面的AFM图像
图5  碳纤维的接触角和表面自由能
SamplesC1sO1sN1sO/CN/C
UCF78.8718.212.910.230.03
PDA-UCF-16 h66.9729.913.120.450.05
PDA-UCF-16 ha69.5327.482.990.400.04
表1  改性前后碳纤维表面的元素含量
图6  改性前后碳纤维的XPS谱
Binding energy/eVAttributionsConcentration / %
UCFPDA-UCF-16 hPDA-UCF-16 ha
284.7C-C56.845.049.32
285.1C-N29.2836.6733.29
286.4C-O11.8913.6212.29
288.8O-C=O2.033.793.94
290.9π-π*-0.921.16
表2  改性前后碳纤维表面活性官能团的含量
图7  CF/PA6复合材料界面性能增强的机理示意图
1 Chen J C, Xu H J, Liu C T, et al. The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites [J]. Compos. Sci. Technol., 2018, 168: 20
doi: 10.1016/j.compscitech.2018.09.007
2 Liu L, Yan F, Li M, et al. A novel thermoplastic sizing containing graphene oxide functionalized with structural analogs of matrix for improving interfacial adhesion of CF/PES composites [J]. Composites, 2018, 114A: 418
3 Zhao Z B, Teng K Y, Li N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface [J]. Compos. Struct., 2017, 159: 761
doi: 10.1016/j.compstruct.2016.10.022
4 Tian Y, Zhang H, Zhang Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites [J]. Composites, 2017, 98A: 1
5 Cho B G, Joshi S R, Han J H, et al. Interphase strengthening of carbon fiber/polyamide 6 composites through mixture of sizing agent and reduced graphene oxide coating [J]. Composites, 2021, 149A: 106521
6 Zhao Y Z, Liu F Y, Lu J, et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites [J]. Fibers Polym., 2017, 18: 1586
doi: 10.1007/s12221-017-1257-8
7 Yan T W, Yan F, Li S Y, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent [J]. Composites, 2020, 199B: 108258
8 Luo L, Fei J, Duan X, et al. Chemically grafting APS onto MnO2 nanosheets as a new interphase for improving interfacial properties in carbon fiber composites [J]. Tribol. Int., 2019, 134: 145
doi: 10.1016/j.triboint.2019.01.044
9 Zhan Y K, Zhao Q, Li L P, et al. Research progress of carbon fiber surface modification [J]. Eng. Plast. Appl., 2019, 47(10):135
9 战奕凯, 赵 潜, 李莉萍 等. 碳纤维表面改性研究进展 [J]. 工程塑料应用, 2019, 47(10): 135
10 Chen J L, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface [J]. Compos. Sci. Technol., 2018, 154: 175
doi: 10.1016/j.compscitech.2017.11.005
11 Sui X H, Shi J, Yao H W, et al. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer [J]. Composites, 2017, 92A: 134
12 Yuan X Y, Jiang J, Wei H W, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite [J]. Compos. Sci. Technol., 2021, 201: 108496
doi: 10.1016/j.compscitech.2020.108496
13 Yao S S, Jin F L, Rhee K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review [J]. Composites, 2018, 142B: 241
14 Shang L, Zhang M J, Liu L, et al. Improving the interfacial property of carbon fibre/epoxy resin composites by grafting amine-capped cross-linked poly-itaconic acid [J]. Surf. Interface Anal., 2019, 51: 199
doi: 10.1002/sia.6565
15 Yan F, Liu L, Li M, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites [J]. Composites, 2019, 125A: 105530
16 Dong G Y, Ding Y M, Yang W M, et al. Combined ultrasonic-hydrogen peroxide oxidation treatment of continuous carbon fiber surfaces [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2017, 44(6): 45
16 董广雨, 丁玉梅, 杨卫民 等. 超声波-双氧水联合氧化处理连续碳纤维表面的研究 [J]. 北京化工大学学报(自然科学版), 2017, 44(6): 45
17 Cho B G, Lee J E, Hwang S H, et al. Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization [J]. Composites, 2020, 135A: 105938
18 Kim J, Mauchauffé R, Kim D, et al. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement [J]. Surf. Coat. Technol., 2020, 393: 125841
doi: 10.1016/j.surfcoat.2020.125841
19 Zhang C, Liu L S, Xu Z W, et al. Improvement for interface adhesion of epoxy/carbon fibers endowed with carbon nanotubes via microwave plasma-enhanced chemical vapor deposition [J]. Polym. Compos., 2018, 39: E1262
doi: 10.1002/pc.v39.S2
20 Jin L, Zhang M J, Shang L, et al. A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber [J]. Compos. Sci. Technol., 2020, 200: 108382
doi: 10.1016/j.compscitech.2020.108382
21 Du L L, Wang G, Yan X Q, et al. Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H2 production via aqueous formaldehyde reforming [J]. Sustainable Energy Fuels, 2021, 5(18):4575
doi: 10.1039/D1SE00984B
22 Liu Y, Fang Y C, Liu X L, et al. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion [J]. Compos. Sci. Technol., 2017, 151: 164
doi: 10.1016/j.compscitech.2017.08.008
23 Gao H C, Sun Y M, Zhou J J, et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification [J]. ACS Appl. Mater. Interfaces, 2013, 5: 425
doi: 10.1021/am302500v
24 Fang J P, Zhang L, Li C Z. Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting, infiltration and crystallization [J]. Polymer, 2019, 172: 253
doi: 10.1016/j.polymer.2019.03.013
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[10] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[12] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[13] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.