|
|
聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能 |
王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏( ) |
浙江理工大学材料科学与工程学院 杭州 310018 |
|
Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber |
WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong( ) |
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
引用本文:
王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
Gang WANG,
Leilei DU,
Ziqiang MIAO,
Kaicheng QIAN,
Xiangbowen DU,
Zeting DENG,
Renhong LI.
Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. Chinese Journal of Materials Research, 2023, 37(3): 203-210.
1 |
Chen J C, Xu H J, Liu C T, et al. The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites [J]. Compos. Sci. Technol., 2018, 168: 20
doi: 10.1016/j.compscitech.2018.09.007
|
2 |
Liu L, Yan F, Li M, et al. A novel thermoplastic sizing containing graphene oxide functionalized with structural analogs of matrix for improving interfacial adhesion of CF/PES composites [J]. Composites, 2018, 114A: 418
|
3 |
Zhao Z B, Teng K Y, Li N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface [J]. Compos. Struct., 2017, 159: 761
doi: 10.1016/j.compstruct.2016.10.022
|
4 |
Tian Y, Zhang H, Zhang Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites [J]. Composites, 2017, 98A: 1
|
5 |
Cho B G, Joshi S R, Han J H, et al. Interphase strengthening of carbon fiber/polyamide 6 composites through mixture of sizing agent and reduced graphene oxide coating [J]. Composites, 2021, 149A: 106521
|
6 |
Zhao Y Z, Liu F Y, Lu J, et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites [J]. Fibers Polym., 2017, 18: 1586
doi: 10.1007/s12221-017-1257-8
|
7 |
Yan T W, Yan F, Li S Y, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent [J]. Composites, 2020, 199B: 108258
|
8 |
Luo L, Fei J, Duan X, et al. Chemically grafting APS onto MnO2 nanosheets as a new interphase for improving interfacial properties in carbon fiber composites [J]. Tribol. Int., 2019, 134: 145
doi: 10.1016/j.triboint.2019.01.044
|
9 |
Zhan Y K, Zhao Q, Li L P, et al. Research progress of carbon fiber surface modification [J]. Eng. Plast. Appl., 2019, 47(10):135
|
9 |
战奕凯, 赵 潜, 李莉萍 等. 碳纤维表面改性研究进展 [J]. 工程塑料应用, 2019, 47(10): 135
|
10 |
Chen J L, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface [J]. Compos. Sci. Technol., 2018, 154: 175
doi: 10.1016/j.compscitech.2017.11.005
|
11 |
Sui X H, Shi J, Yao H W, et al. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer [J]. Composites, 2017, 92A: 134
|
12 |
Yuan X Y, Jiang J, Wei H W, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite [J]. Compos. Sci. Technol., 2021, 201: 108496
doi: 10.1016/j.compscitech.2020.108496
|
13 |
Yao S S, Jin F L, Rhee K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review [J]. Composites, 2018, 142B: 241
|
14 |
Shang L, Zhang M J, Liu L, et al. Improving the interfacial property of carbon fibre/epoxy resin composites by grafting amine-capped cross-linked poly-itaconic acid [J]. Surf. Interface Anal., 2019, 51: 199
doi: 10.1002/sia.6565
|
15 |
Yan F, Liu L, Li M, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites [J]. Composites, 2019, 125A: 105530
|
16 |
Dong G Y, Ding Y M, Yang W M, et al. Combined ultrasonic-hydrogen peroxide oxidation treatment of continuous carbon fiber surfaces [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2017, 44(6): 45
|
16 |
董广雨, 丁玉梅, 杨卫民 等. 超声波-双氧水联合氧化处理连续碳纤维表面的研究 [J]. 北京化工大学学报(自然科学版), 2017, 44(6): 45
|
17 |
Cho B G, Lee J E, Hwang S H, et al. Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization [J]. Composites, 2020, 135A: 105938
|
18 |
Kim J, Mauchauffé R, Kim D, et al. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement [J]. Surf. Coat. Technol., 2020, 393: 125841
doi: 10.1016/j.surfcoat.2020.125841
|
19 |
Zhang C, Liu L S, Xu Z W, et al. Improvement for interface adhesion of epoxy/carbon fibers endowed with carbon nanotubes via microwave plasma-enhanced chemical vapor deposition [J]. Polym. Compos., 2018, 39: E1262
doi: 10.1002/pc.v39.S2
|
20 |
Jin L, Zhang M J, Shang L, et al. A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber [J]. Compos. Sci. Technol., 2020, 200: 108382
doi: 10.1016/j.compscitech.2020.108382
|
21 |
Du L L, Wang G, Yan X Q, et al. Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H2 production via aqueous formaldehyde reforming [J]. Sustainable Energy Fuels, 2021, 5(18):4575
doi: 10.1039/D1SE00984B
|
22 |
Liu Y, Fang Y C, Liu X L, et al. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion [J]. Compos. Sci. Technol., 2017, 151: 164
doi: 10.1016/j.compscitech.2017.08.008
|
23 |
Gao H C, Sun Y M, Zhou J J, et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification [J]. ACS Appl. Mater. Interfaces, 2013, 5: 425
doi: 10.1021/am302500v
|
24 |
Fang J P, Zhang L, Li C Z. Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting, infiltration and crystallization [J]. Polymer, 2019, 172: 253
doi: 10.1016/j.polymer.2019.03.013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|