|
|
钛增强Cu40Zn黄铜合金的粉末冶金制备及其力学性能 |
马晨,张鑫,潘登,郑飞洋,李树丰( ) |
西安理工大学材料科学与工程学院 西安 710048 |
|
Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy |
MA Chen,ZHANG Xin,PAN Deng,ZHENG Feiyang,LI Shufeng( ) |
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
引用本文:
马晨,张鑫,潘登,郑飞洋,李树丰. 钛增强Cu40Zn黄铜合金的粉末冶金制备及其力学性能[J]. 材料研究学报, 2020, 34(2): 101-108.
Chen MA,
Xin ZHANG,
Deng PAN,
Feiyang ZHENG,
Shufeng LI.
Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy[J]. Chinese Journal of Materials Research, 2020, 34(2): 101-108.
[1] | Liu P, Ren F Z, Jia S G. Copper Alloys and their Applications [M]. Beijing: Chemical Industry Press, 2007: 5 | [1] | (刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京; 化学工业出版社, 2007: 5) | [2] | Davis J R. ASM International-Alloying-Understanding the Basics [M]. The United States of America, Chagrin Falls, 2001: 455 | [3] | Liptakova T, Broncek J, Lovisek M, et al. Tribological and corrosion properties of Al-brass [J]. Mater. Today, 2017, 4: 5867 | [4] | Tian L, Russell A, Riedemann T, et al. A deformation-processed Al-matrix/Ca-nano?lamentary composite with low density, high strength, and high conductivity [J]. Mater. Sci. Eng., 2017, 690A: 348 | [5] | Davis J R. ASM Specialty Handbook (Copper and Copper Alloys) [M]. Materials Park, Ohio, USA: ASM International, 2008: 105 | [6] | Li S F, Imai H, Atsumi H, et al. Characteristics of high strength extruded BS40CrFeSn alloy prepared by spark plasma sintering and hot pressing [J]. J. Alloys Compd., 2010, 493: 128 | [7] | Wang H Y, Feng B Q, Song G, et al. Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler [J]. Mater. Manufactur. Proc., 2017, 33: 735 | [8] | Mo Y D, Jiang Y B, Liu X H, et al. Effects of microstructure on the deformation behavior, mechanical Properties and residual stress of cold-rolled HAl77-2 aluminum brass tube [J]. J. Mater. Process. Technol., 2016, 235: 75 | [9] | Okamoto H, Schlesinger M E, Mueller E M. ASM Handbook-Alloy Phase Diagrams [M]. The United States of America, H. OKAMOTO, 2016: 3 | [10] | Kumar K C H, Ansara I, Wollants P, et al. Thermodynamic optimization of the Cu Ti system [J]. Zeitschrift für Metallkunde, 1996, 87: 666 | [11] | Li S F, Imai H, Atsumi H, et al. Phase transformation and precipitation hardening behavior of Cr and Fe in BS40CrFeSn alloy [J]. J. Mater. Sci., 2010, 45: 5669 | [12] | Zhang X, Liu X Y, Wallinder I O, et al. The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere [J]. Corros. Sci., 2016, 103: 20 | [13] | General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T228-2002 Metallic materials-Tensile testing at ambient temperature [S]. Beijing: China Standards Press, 2002 | [13] | ((中华人民共和国国家质量监督检验检疫总局. GB/T228-2002 金属材料 室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2002) | [14] | Yuan Q, Ge H H, Sha J Y, et al. Influence of Al2O3 nanoparticles on the corrosion behavior of brass in simulated cooling water [J]. J. Alloys Compd., 2018, 764: 512 | [15] | Li H, Xu W, Wang Z X, et al. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2016, 650A: 254 | [16] | Li S F, Imai H, Atsumi H, et al. Contribution of Ti addition to characteristics of extruded Cu40Zn brass alloy prepared by powder metallurgy [J]. Mater. Des., 2011, 32: 192 | [17] | Li S F, Imai H, Atsumi H, et al. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion [J]. Mater. Sci. Eng., 2012, 535A: 22 | [18] | Li S F, Imai H, Kondoh K. Microstructure, phase transformation, precipitation behavior and mechanical properties of P/M Cu40Zn-1.0 wt% Ti brass alloy via spark plasma sintering and hot extrusion [J]. J. Mater. Sci. Technol., 2013, 29: 1018 | [19] | Liu W D, Qu H, Chen C, et al. Evolution of valence electron structure of GP Zone during precipitation in Al-Cu alloy [J]. Rare Met. Mater. Eng., 2010, 39: 598 | [19] | (刘伟东, 屈华, 陈超等. Al-Cu合金GP区形成过程的价电子结构演变 [J]. 稀有金属材料与工程, 2010, 39: 598) | [20] | Liu C Y, Qu B, Ma Z Y, et al. Recrystallization, precipitation, and resultant mechanical properties of rolled Al-Zn alloy after aging [J]. Mater. Sci. Eng., 2016: 657A: 284 | [21] | Broek D. Prediction of fatigue crack growth [A]. Elementary Engineering Fracture Mechanics [M]. Dordrecht: Springer, 1982: 24 | [22] | Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300℃ [J]. Mater. Res. Lett., 2018, 7: 18 | [23] | Hu G X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 188 | [23] | (胡庚祥. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 188) | [24] | Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195 [J]. J. Alloys Compd., 2016, 669: 187 | [25] | Li S F, Imai H, Kondoh K, et al. Precipitation strengthening of supersaturated alloying elements in cu40zn graphite brasses prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2018, 32: 843 | [25] | (李树丰, 今井久志, 近藤胜义等. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化 [J]. 材料研究学报, 2018, 32: 843) | [26] | Toulfatzis A I, Pantazopoulos G A, Paipetis A S. Fracture mechanics properties and failure mechanisms of environmental-friendly brass alloys under impact, cyclic and monotonic loading conditions [J]. Eng. Fail. Anal., 2018, 90: 497 | [27] | Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing [J]. Vacuum, 2017, 141: 265 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|