Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 101-108    DOI: 10.11901/1005.3093.2019.484
  研究论文 本期目录 | 过刊浏览 |
钛增强Cu40Zn黄铜合金的粉末冶金制备及其力学性能
马晨,张鑫,潘登,郑飞洋,李树丰()
西安理工大学材料科学与工程学院 西安 710048
Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy
MA Chen,ZHANG Xin,PAN Deng,ZHENG Feiyang,LI Shufeng()
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

马晨,张鑫,潘登,郑飞洋,李树丰. 钛增强Cu40Zn黄铜合金的粉末冶金制备及其力学性能[J]. 材料研究学报, 2020, 34(2): 101-108.
Chen MA, Xin ZHANG, Deng PAN, Feiyang ZHENG, Shufeng LI. Fabrication and Mechanical Properties of Ti-Reinforced Cu40Zn Brass Alloy via Powder Metallurgy[J]. Chinese Journal of Materials Research, 2020, 34(2): 101-108.

全文: PDF(8275 KB)   HTML
摘要: 

采用粉末冶金法将合金元素Ti加到Cu40Zn基体中制备钛黄铜,研究了Ti的添加量对黄铜微观组织、界面结构、相组成以及力学性能的影响。结果表明:Ti在基体中固溶析出并与Cu40Zn反应生成了亚微米级的Cu2Ti4O颗粒和Ti纳米团簇,随着Ti含量的提高钛黄铜的屈服强度、抗拉强度和硬度呈提高的趋势。增大位错运动阻力产生的第二相强化、钉扎产生的细晶强化以及加工硬化,使Cu40Zn的力学性能提高。综合性能良好的Cu40Zn-1.9Ti,其屈服强度、抗拉强度、延伸率和硬度分别达到375 MPa、602 MPa、17.7%和163HV。

关键词 金属材料粉末冶金黄铜合金力学性能纳米析出相    
Abstract

High strength Ti-reinforced Cu40Zn brass alloy was prepared by powder metallurgy. The effect of Ti addition on the microstructure, interfacial structure, phase composition and mechanical properties of the brass was investigated. Results show that Ti exists in Cu40Zn matrix as sub-micron Cu2Ti4O particles and Ti nanoclusters, which can significantly improve the mechanical properties of Cu40Zn by means of second-phase strengthening, fine-grain strengthening and processing hardening. Cu40Zn-1.9Ti has good comprehensive performance: the yield strength, tensile strength, elongation at break and hardness are 375 MPa, 602 MPa, 17.7% and 163 HV respectively.

Key wordsmetallic materials    powder metallurgy    brass alloy    titanium    mechanical properties    nano precipitates
收稿日期: 2019-10-16     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金(51571160);国家自然科学基金(51871180);陕西省自然科学基金(2015JM5233);西安市科技计划项目(201805037-YD15CG21(15));西安理工大学博士学位论文创新基金(310-252071903)
作者简介: 马晨,男,1994年生,硕士生
图1  钛增强Cu40Zn试样制备过程的示意图
图2  原始粉末和混合粉末的微观形貌和元素分布
图3  Cu40Zn-xTi黄铜混合粉末和挤压试样的XRD图谱
图4  不同含钛量黄铜挤压后的纵截面金相照片
图5  不同含钛量黄铜挤压后的纵截面和横截面SEM照片
图6  Cu40Zn-0.7Ti热挤压试样的EDS结果
图7  Cu40Zn-1.9Ti 试样的TEM照片、TEM明场像、选区电子衍射花样、HR1, HR2区域对应的高分辨照片和晶格衍射条纹
图8  纯黄铜和钛黄铜的应力-应变曲线
Materials

YS

/MPa

UTS

/MPa

Elongation

/%

Hardness

/HV0.2

Cu40Zn33551924.5132
Cu40Zn-0.3Ti33654923.0136
Cu40Zn-0.7Ti34356222.2143
Cu40Zn-1.1Ti34757321.0147
Cu40Zn-1.5Ti35258719.3154
Cu40Zn-1.9Ti37560217.7163
表1  不同Ti含量钛黄铜的力学性能
图9  钛黄铜的力学性能和硬度与钛含量的关系
图10  不同Ti含量钛黄铜的拉伸断口SEM照片
[1] Liu P, Ren F Z, Jia S G. Copper Alloys and their Applications [M]. Beijing: Chemical Industry Press, 2007: 5
[1] (刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京; 化学工业出版社, 2007: 5)
[2] Davis J R. ASM International-Alloying-Understanding the Basics [M]. The United States of America, Chagrin Falls, 2001: 455
[3] Liptakova T, Broncek J, Lovisek M, et al. Tribological and corrosion properties of Al-brass [J]. Mater. Today, 2017, 4: 5867
[4] Tian L, Russell A, Riedemann T, et al. A deformation-processed Al-matrix/Ca-nano?lamentary composite with low density, high strength, and high conductivity [J]. Mater. Sci. Eng., 2017, 690A: 348
[5] Davis J R. ASM Specialty Handbook (Copper and Copper Alloys) [M]. Materials Park, Ohio, USA: ASM International, 2008: 105
[6] Li S F, Imai H, Atsumi H, et al. Characteristics of high strength extruded BS40CrFeSn alloy prepared by spark plasma sintering and hot pressing [J]. J. Alloys Compd., 2010, 493: 128
[7] Wang H Y, Feng B Q, Song G, et al. Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler [J]. Mater. Manufactur. Proc., 2017, 33: 735
[8] Mo Y D, Jiang Y B, Liu X H, et al. Effects of microstructure on the deformation behavior, mechanical Properties and residual stress of cold-rolled HAl77-2 aluminum brass tube [J]. J. Mater. Process. Technol., 2016, 235: 75
[9] Okamoto H, Schlesinger M E, Mueller E M. ASM Handbook-Alloy Phase Diagrams [M]. The United States of America, H. OKAMOTO, 2016: 3
[10] Kumar K C H, Ansara I, Wollants P, et al. Thermodynamic optimization of the Cu Ti system [J]. Zeitschrift für Metallkunde, 1996, 87: 666
[11] Li S F, Imai H, Atsumi H, et al. Phase transformation and precipitation hardening behavior of Cr and Fe in BS40CrFeSn alloy [J]. J. Mater. Sci., 2010, 45: 5669
[12] Zhang X, Liu X Y, Wallinder I O, et al. The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere [J]. Corros. Sci., 2016, 103: 20
[13] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T228-2002 Metallic materials-Tensile testing at ambient temperature [S]. Beijing: China Standards Press, 2002
[13] ((中华人民共和国国家质量监督检验检疫总局. GB/T228-2002 金属材料 室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2002)
[14] Yuan Q, Ge H H, Sha J Y, et al. Influence of Al2O3 nanoparticles on the corrosion behavior of brass in simulated cooling water [J]. J. Alloys Compd., 2018, 764: 512
[15] Li H, Xu W, Wang Z X, et al. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2016, 650A: 254
[16] Li S F, Imai H, Atsumi H, et al. Contribution of Ti addition to characteristics of extruded Cu40Zn brass alloy prepared by powder metallurgy [J]. Mater. Des., 2011, 32: 192
[17] Li S F, Imai H, Atsumi H, et al. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion [J]. Mater. Sci. Eng., 2012, 535A: 22
[18] Li S F, Imai H, Kondoh K. Microstructure, phase transformation, precipitation behavior and mechanical properties of P/M Cu40Zn-1.0 wt% Ti brass alloy via spark plasma sintering and hot extrusion [J]. J. Mater. Sci. Technol., 2013, 29: 1018
[19] Liu W D, Qu H, Chen C, et al. Evolution of valence electron structure of GP Zone during precipitation in Al-Cu alloy [J]. Rare Met. Mater. Eng., 2010, 39: 598
[19] (刘伟东, 屈华, 陈超等. Al-Cu合金GP区形成过程的价电子结构演变 [J]. 稀有金属材料与工程, 2010, 39: 598)
[20] Liu C Y, Qu B, Ma Z Y, et al. Recrystallization, precipitation, and resultant mechanical properties of rolled Al-Zn alloy after aging [J]. Mater. Sci. Eng., 2016: 657A: 284
[21] Broek D. Prediction of fatigue crack growth [A]. Elementary Engineering Fracture Mechanics [M]. Dordrecht: Springer, 1982: 24
[22] Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300℃ [J]. Mater. Res. Lett., 2018, 7: 18
[23] Hu G X. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 188
[23] (胡庚祥. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 188)
[24] Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195 [J]. J. Alloys Compd., 2016, 669: 187
[25] Li S F, Imai H, Kondoh K, et al. Precipitation strengthening of supersaturated alloying elements in cu40zn graphite brasses prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2018, 32: 843
[25] (李树丰, 今井久志, 近藤胜义等. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化 [J]. 材料研究学报, 2018, 32: 843)
[26] Toulfatzis A I, Pantazopoulos G A, Paipetis A S. Fracture mechanics properties and failure mechanisms of environmental-friendly brass alloys under impact, cyclic and monotonic loading conditions [J]. Eng. Fail. Anal., 2018, 90: 497
[27] Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing [J]. Vacuum, 2017, 141: 265
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.