Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 753-760    DOI: 10.11901/1005.3093.2020.137
  研究论文 本期目录 | 过刊浏览 |
张力退火感生各向异性对纳米晶合金磁性能的影响
潘贇1,2, 刘天成1,2(), 李广敏1,2, 戴白杨2, 吕娜2, 张伟2, 唐冬冬2
1.中国钢研科技集团有限公司 北京 100081
2.安泰科技股份有限公司 北京 100081
Effect of Tension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy
PAN Yun1,2, LIU Tiancheng1,2(), LI Guangmin1,2, DAI Baiyang2, LV Na2, ZHANG Wei2, TANG Dongdong2
1. China Iron & Steel Research Institute Group, Beijing 100081, China
2. Advanced Technology & Materials Co. Ltd. , Beijing 100081, China
引用本文:

潘贇, 刘天成, 李广敏, 戴白杨, 吕娜, 张伟, 唐冬冬. 张力退火感生各向异性对纳米晶合金磁性能的影响[J]. 材料研究学报, 2020, 34(10): 753-760.
Yun PAN, Tiancheng LIU, Guangmin LI, Baiyang DAI, Na LV, Wei ZHANG, Dongdong TANG. Effect of Tension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy[J]. Chinese Journal of Materials Research, 2020, 34(10): 753-760.

全文: PDF(7424 KB)   HTML
摘要: 

对Fe74.1Cu1Nb3Si15B6.9(%,原子分数)纳米晶合金进行连续张力退火,研究了张力退火感生各向异性对纳米晶合金磁性能的影响。结果表明,张力退火产生的感生各向异性常数(Ku)与退火张力(σ)满足线性关系。随着退火张力的增大合金在f =5 kHz和H=3 A/m测试点的有效磁导率(μe)先增大后减小,且随着磁场和频率的提高有效磁导率(μe)的衰减减小。退火张力为67 MPa时有效磁导率(μe)在磁场强度H为0~800 A/m和频率f为1 k~3 MHz范围内保持约800,表现出恒导磁特性。同时,合金的单位质量损耗(Pm)随着退火张力的增大而减小,当退火张力为67 MPa时损耗为68 W/kg (测试条件:Bm=300 mT,f =100 kHz),与无张力退火相比下降约67%。同时,通过磁光克尔效应观察到张力退火后合金内部形成垂直于张力方向的180°片形畴,随着退火张力的增大磁畴宽度减小且趋于一致,退火张力为67 MPa时片形畴的宽度约为85 μm。

关键词 金属材料磁性能张力退火感生各向异性    
Abstract

The samples of Fe74.1Cu1Nb3Si15B6.9 (atomic fraction, %) nanocrystalline alloy were subjected to continuous tension annealing treatment, while the effect of the continuous tension annealing induced-anisotropy on their structure and magnetic properties was investigated. The results show that the induced anisotropy constant (Ku) and annealing tension (σ) fit linear relationship in the presence of tensile stress. The effective permeability (μe) at test points f=5 kHz and H=3 A/m first increased and then decreased with the increase of annealing tension. The increase of annealing tension decelerate the process of effective permeability (μe) attenuation, which can remain constant over a wide range of magnetic field and frequency. Compared with other samples, the effective permeability (μe) of the alloy is nearly 800 in the testing range of 0~800 A/m (magnetic field) and 1 k~1 MHz (frequency) when tensile stress is 67 MPa. That show the tension annealed alloy has an excellent constant permeable property. Otherwise, with the increase of annealing tension the unit mass loss of the alloy decreases. When tensile stress is 67 MPa the unit mass loss of the alloy approximates 68 W/kg (testing condition: Bm=300 mT, f =100 kHz), which reduces nearly 67% compared with the absence of annealing tension. Besides, the 180° stripe magnetic domain observed by magneto-optical Kerr microscopy is perpendicular to the tensile stress on the alloy. The increase of tensile stress leads to decrease of the width of domain structures in the alloy and tends to comparable. When tensile stress is 67 MPa the width of domain structures is about 85 μm.

Key wordsmetallic materials    magnetic properties    tensile annealing    induced anisotropy
收稿日期: 2020-04-24     
ZTFLH:  TG156.21  
基金资助:国家重点研发计划(2016YFB0300500)
作者简介: 潘贇,男,1996年生,硕士生
图1  连续张力退火设备的示意图
图2  在不同温度连续退火后合金的XRD图谱、晶粒尺寸和单位质量损耗(Pm)与温度的关系
图3  连续张力退火合金的有效磁导率(μe)与磁场和频率的关系
图4  合金的单位质量损耗(Pm)与张力的关系和合金的动态磁滞回线
图5  不同张力退火合金的直流磁滞回线和各向异性场与退火张力的关系
图6  不同张力退火合金的磁畴结构
σ/MPanΔd (dmax-dmin)/μm
<29210
810214
3219107
672236
表1  不同退火张力下的磁畴数量和宽度变化
[1] Yao K F, Shi L X, Chen S Q, et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys [J]. Acta Phys. Sin., 2018, 67(1): 8
[1] 姚可夫, 施凌翔, 陈双琴等. 铁基软磁非晶/纳米晶合金研究进展及应用前景 [J]. 物理学报, 2018, 67(1): 8
[2] Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26(5): 1397
[3] Lashgari H R, Chu D, Xie S S, et al. Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study [J]. J. Non-Cryst. Solids, 2014, 391: 61
[4] Bolyachkin A S, Komogortsev S V. Power-law behavior of coercivity in nanocrystalline magnetic alloys with grain-size distribution [J]. Scr. Mater., 2018, 152: 55
[5] Gheiratmand T, Madaah Hosseini H R. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements [J]. J. Magn. Magn. Mater., 2016, 408: 177
[6] Wu X R, Li D R, Li Z, et al. Amorphous FeNiCoCuSiBCr alloys with superior direct current tolerant characteristics [J]. J. Iron Steel Res. Int., 2015, 22(02): 145
[7] Lukshina V A, Dmitrieva N V, Volkova E G, et al. Magnetic properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy nanocrystallized in the presence of tensile stresses[J]. Phys. Met. Metallogr., 2019, 120(4): 320
[8] Varga L K, Kovacs G. Effect of transversal applied bias field on the longitudinal soft magnetic properties of nanocrystalline finemet cores [J]. IEEE Trans. Magn., 2012, 48(4): 1360
[9] Jiang M F, Chen W Z. Research on constant permeability property of annealed F-Si-B amorphous alloy [J]. Heat Treatment of Metals, 2010, 35(12): 116
[9] 姜敏凤, 陈文智. 退火态Fe-Si-B非晶合金恒导磁性能研究 [J].金属热处理, 2010, 35(12): 116
[10] Herzer G, Budinsky V, Polak C. Magnetic properties of FeCuNbSiB nanocrystallized by flash annealing under high tensile stress [J]. Phys. Status Solidi B-Basic Solid State Phys., 2011, 248(10): 2382-2388
[11] Ohnuma M, Herzer G, Kozikowski P, et al. Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy [J]. Acta Mater., 2012, 60(3): 1278
[12] Nutor R K, Xu X J, Fan X Z, et al. Effects of applying tensile stress during annealing on the GMI and induced anisotropy of Fe-Cu-Nb-Si-B alloys [J]. J. Magn. Magn. Mater., 2019, 471:544
[13] Nutor R K, Fan X Z, He X W, et al. Formation mechanism of stress-induced anisotropy in stress-annealed Fe-based nanocrystalline ribbon alloys[J]. J. Alloy. Compd., 2019, 774: 1243
[14] Fan X Z, He X W, Nutor R K, et al. Effect of stress on crystallization behavior in a Fe-based amorphous ribbon: An in situ synchrotron radiation X-ray diffraction study [J]. J. Magn. Magn. Mater., 2019, 469: 349
doi: 10.1016/j.jmmm.2018.08.078
[15] Yanai T, Shimada A, Takahashi K, et al. Magnetic properties of Fe-based ribbons and toroidal cores prepared by continuous Joule heating under tensile stress [J]. IEEE Trans. Magn., 2006, 42(10): 2781
[16] Ohnuma M, Herzer G, Kozikowski P, et al. Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy [J]. Acta Mater., 2012, 60: 1278
[17] Liu G, Sun L P, Wang X G, et al. Improvement of core loss calculation method and simulation application under sinusoidal and harmonic excitations[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909
[17] 刘刚, 孙立鹏, 王雪刚等. 正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909
[18] Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials [J]. Acta Mater., 2013, 61(3): 718
[19] Wang Z, He K Y. Isothermal aging of permeability of amorphous Fe-Ni-Si-B alloys [J]. Acta Phys. Sin., 1992, 41(10): 1694
[19] 王治, 何开元. Fe-Ni-Si-B非晶合金磁导率的等温时效 [J]. 物理学报, 1992, 41(10): 1694
[20] Saito K, Park H S, Shindo D, et al. Magnetic domain structure in Fe78.8-xCoxCu0.6Nb2.6Si9B9 nanocrystalline alloys studied by Lorentz microscopy [J]. J. Magn. Magn. Mater., 2006, 305(2): 304
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.