Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 761-769    DOI: 10.11901/1005.3093.2020.058
  研究论文 本期目录 | 过刊浏览 |
高通量抗污染碳量子点/聚砜纳米复合分离膜的制备
陈斌1, 张佳露1, 张岩1, 赵海超2, 朱丽静2()
1.沈阳化工大学材料科学与工程学院 沈阳 110142
2.中国科学院宁波材料与工程技术研究所 海洋材料及相关技术重点实验室 宁波 315201
Carbon Dots Incorporated Polysulfone Nanocomposite Membranes with High Water Fux and Fouling Resistance
CHEN Bin1, ZHANG Jialu1, ZHANG Yan1, ZHAO Haichao2, ZHU Lijing2()
1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

陈斌, 张佳露, 张岩, 赵海超, 朱丽静. 高通量抗污染碳量子点/聚砜纳米复合分离膜的制备[J]. 材料研究学报, 2020, 34(10): 761-769.
Bin CHEN, Jialu ZHANG, Yan ZHANG, Haichao ZHAO, Lijing ZHU. Carbon Dots Incorporated Polysulfone Nanocomposite Membranes with High Water Fux and Fouling Resistance[J]. Chinese Journal of Materials Research, 2020, 34(10): 761-769.

全文: PDF(12800 KB)   HTML
摘要: 

先以4-氨基水杨酸(ASA)为原料发生水热反应合成碳量子点(CDs),随后将其共混分散在铸膜液中用非溶剂诱导相分离法制备了PSF/CDs纳米复合膜。透射电子显微镜(TEM)观测和傅里叶变换红外光谱(FTIR)证实,CDs具有小尺寸和大量亲水基团的特点。使用水接触角分析(WCA)、扫描探针显微镜(SPM)和扫描电子显微镜(SEM)对分离膜进行了表征,发现纳米复合膜具有比原始膜更好的亲水性和更多的孔洞,从而使分离膜具有更高的通量和抗污染性能。PSF/CDs膜的通量回复率(FRR)超过90%,总污染率(Rt)低于60%,且可逆型污染为主要污染源。CDs含量(质量分数)为2%的复合膜整体效果最佳。具有更强抗污染能力的纳米复合膜,其水通量甚至为纯PSF膜的3倍。

关键词 有机高分子材料聚砜碳量子点纳米复合膜抗污染性亲水性    
Abstract

Carbon dots (CDs) were synthesized from 4-aminosalicylic acid (ASA) by a hydrothermal carbonization technique and then incorporated into the membrane casting solution. Then polysulfone/carbon dots (PSF/CDs) nanocomposite membranes were prepared by non-solvent induced phase separation. The results of transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) show that CDs with a lot of hydrophilic groups had been successfully synthesized. Water contact angle analysis (WCA), scanning probe microscope (SPM) and scanning electron microscope (SEM) were used to characterize all membranes. It could be found that nanocomposite membranes have better hydrophilicity and water flux than the original membrane. Therefore, the anti-fouling performance of the modified membranes had also been improved. Flux recovery rate (FRR) of the fabricated PSF/CDs membrane is higher than 90%, total fouling ratio (Rt) is less than 60%, and the reversible fouling played a dominant role during the fouling process. When the CDs content (mass fraction) is 2%, the overall effect of the membrane is the best with comprehensive performances such as separation efficiency, separation effect, and antifouling ability etc. The water flux of the nanocomposite membranes with stronger anti-fouling ability is even 3 times that of the plain PSF membrane.

Key wordsorganic polymer materials    polysulfone    carbon quantum dots    nanocomposite membrane    fouling resistance    hydrophilicity
收稿日期: 2020-02-24     
ZTFLH:  TQ028.5  
基金资助:国家自然科学基金(51603214);宁波市科学技术局基金(2018A610110);中国科学院“百人计划”研究项目(Y60707WR04)
作者简介: 陈斌,男,1963年生,博士,教授
图1  CDs的合成和相转化成膜过程分离膜内部变化示意图
图2  CDs的TEM照片和在365 nm紫外光线下的荧光图像,CDs和ASA的红外光谱以及粒径分布和XPS能谱
SampleAtomic concentration (%, mole fraction)
O 1sN 1sC 1s
ASA21.796.9571.26
CDs12.098.5877.34
表1  ASA和CDs的元素含量
图3  ASA和CDs的XPS元素精细谱图
图4  M0, M0.5, M5分离膜的显微红外谱图、XPS广谱以及不同组分分离膜的实物图
SampleAtomic concentration (%, mole fraction)
O 1sN 1sC 1sS 2p
M015.64-81.123.24
M0.513.550.3883.642.43
M511.673.0584.261.02
表2  不同组分分离膜的元素含量
图5  分离膜表面的SEM照片
SimpleM0M0.5M1M2M3M5
Average/nm9.4 ± 0.810.2 ± 0.913.6 ± 1.716.4 ± 2.420.1 ± 4.322.3 ± 8.8
Porosity/%68.9 ± 0.569.6 ± 0.770.9 ± 0.673.6 ± 0.675.0 ± 0.977.3 ± 1.0
表3  分离膜表面的平均孔径和孔隙率
图6  SPM表面粗糙度示意图
图7  分离膜的截面结构SEM图像
图8  不同分离膜试样的水接触角
图9  通量测试FW1, FBSA, FW2结果、BSA分子截留率RBSA及回复率FRR测试结果、总污染率(Rt)、可逆污染率(Rr)和不可逆污染率对比(Rir)以及可逆污染比(Rr/Rt)与不可逆污染比(Rir/Rt)的对比
[1] Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal [J]. Water Res., 2009, 43: 715
doi: 10.1016/j.watres.2008.11.014 pmid: 19046755
[2] Kim K S, Lee K H, Cho K, et al. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment [J]. J. Membr. Sci., 2002, 199: 135
[3] Higuchi A, Shirano K, Harashima M, et al. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility [J]. Biomaterials, 2002, 23: 2659
doi: 10.1016/s0142-9612(01)00406-9 pmid: 12059015
[4] Chakrabartya B, Ghoshal A K, Purkait M K. Characterization and performance studies of polysulfone membranes using PVP as an additive [J]. J. Membr. Sci., 2008, 315: 36
[5] Steen M L, Hymas L, Havey E D, et al. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification [J]. J. Membr. Sci., 2001, 188: 97
[6] Jang I Y, Kweon O H, Kim K E, et al. Application of polysulfone (PSf)-and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis [J]. J. Membr. Sci., 2008, 322: 154
[7] Qiu S, Wu L G, Pan X J, et al. Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes [J]. J. Membr. Sci., 2009, 342: 165
[8] Lin H, Dangwal S, Liu R, et al. Reduced wrinkling in GO membrane by grafting basal-plane groups for improved gas and liquid separations [J]. J. Membr. Sci., 2018, 563: 336
[9] Ilker A, Erhan Z, Haluk B, et al. Green synthesis of reduced graphene oxide/polyaniline composite and its application for salt rejection by polysulfone-based composite membranes [J]. J. Phys. Chem. B, 2014, 118: 5707
[10] Ying L S, Wei S. Carbon quantum dots and their applications [J]. Chem. Soc. Rev., 2015, 44: 362
doi: 10.1039/c4cs00269e pmid: 25316556
[11] Zhang H, Huang H, Ming H, et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light [J]. J. Mater. Chem., 2012, 22: 10501
[12] Dong Y, Wang R, Li H, et al. Polyamine-functionalized carbon quantum dots for chemical sensing [J]. Carbon, 2012, 50: 2810
[13] Wang S, Chen Z G, Cole I, et al. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence [J]. Carbon, 2015, 82: 304
[14] Rodríguez-León E. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts) [J]. Nanoscale Res. Lett., 2013, 8: 318
pmid: 23841946
[15] Bi R, Zhang Q, Zhang R, et al. Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property [J]. J. Membr. Sci., 2018, 553: 17
[16] Selby W, Bennett M, Jewell D. Topical treatment of distal ulcerative colitis with 4-amino-salicylic acid enemas [J]. Digestion, 1984, 29: 231
doi: 10.1159/000199038 pmid: 6381186
[17] Marteau P, Halphen M. Comparative randomized open study of the efficacy and tolerance of enemas with 2 gr of 4-amino-salicylic acid (4-ASA) and 1 gr of 5-amino-salicylic acid (5-ASA) in distal forms of hemorrhagic rectocolitis [J]. Gastroenterol. Clin. Biol., 1995, 19: 31
pmid: 7720988
[18] Song Y, Zhu C, Song J, et al. Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe(3+) in living cells [J]. ACS Appl. Mater. Inter., 2017, 9: 7399
[19] Feng C, Shi B, Li G, et al. Preparation and properties of microporous membrane from poly (vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation [J]. J. Membr. Sci., 2004, 237: 15
[20] Cui M, Ren S, Zhao H, et al. Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1M HCl solution [J]. Appl. Surf. Sci., 2018, 443: 145
[21] Feng Y, Zhao M, Ji H, et al. Solvothermal synthesis of oxygen/nitrogen functionalized graphene-like materials with diversified morphology from different carbon sources and their fluorescence properties [J]. J. Mater. Sci., 2015, 50: 1300
[22] Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging [J]. Angew. Chem., 2015, 127: 5450
[23] Ganesh B M, Isloor A M, Ismail A F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane [J]. Desalination, 2013, 313: 199
[24] Xu Z, Zhang J, Shan M, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes [J]. J. Membr. Sci., 2014, 458: 1
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.