Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 744-752    DOI: 10.11901/1005.3093.2020.159
  研究论文 本期目录 | 过刊浏览 |
Al预沉积层对金属有机物化学气相沉积方法在Si衬底上生长AlN缓冲层和GaN外延层的影响
甄龙云1, 彭鹏2, 仇成功1, 郑蓓蓉1, Armaou Antonios1,3, 钟蓉1()
1.温州大学机电工程学院 温州 325035
2.陕西电子集成电路先导技术研究院有限责任公司 西安 710119
3.Department of Chemical Engineering, Pennsylvania State University, University Park 16802, USA
Effect of Pre-deposited Al Layer on Growth of AlN Buffer Layer and GaN Film on Si Substrate by Metal-organic Chemical Vapor Deposition
ZHEN Longyun1, PENG Peng2, QIU Chenggong1, ZHENG Beirong1, ARMAOU Antonios1,3, ZHONG Rong1()
1. College of Electricity and Mechanics, Wenzhou University, Wenzhou 325035, China
2. Shaanxi Institute of Advanced Optoelectronic Integrated Circuit Technologies, Xi'an 710119, China
3. Department of Chemical Engineering, Pennsylvania State University, University Park 16802, USA
引用本文:

甄龙云, 彭鹏, 仇成功, 郑蓓蓉, Armaou Antonios, 钟蓉. Al预沉积层对金属有机物化学气相沉积方法在Si衬底上生长AlN缓冲层和GaN外延层的影响[J]. 材料研究学报, 2020, 34(10): 744-752.
Longyun ZHEN, Peng PENG, Chenggong QIU, Beirong ZHENG, Antonios ARMAOU, Rong ZHONG. Effect of Pre-deposited Al Layer on Growth of AlN Buffer Layer and GaN Film on Si Substrate by Metal-organic Chemical Vapor Deposition[J]. Chinese Journal of Materials Research, 2020, 34(10): 744-752.

全文: PDF(14446 KB)   HTML
摘要: 

采用金属有机物化学气相沉积法(MOCVD)在硅(Si)衬底制备铝/氮化铝/氮化镓(Al/AlN/GaN)多层薄膜,使用光学显微镜(OM)、原子力显微镜(AFM)、X射线衍射(XRD)等手段表征AlN和GaN薄膜的微观结构和晶体质量,研究了TMAl流量对AlN薄膜和GaN薄膜的形核和生长机制的影响。结果表明,预沉积Al层能促进AlN的形核和生长,进而提高GaN外延层的薄膜质量。TMAl流量太低则预沉积Al层不充分,AlN缓冲层的质量取决于由形核长大的高结晶度AlN薄膜与在气氛中团聚长大并沉积的低结晶度AlN薄膜之间的竞争,AlN薄膜的质量随着TMAl流量的升高而提高,GaN薄膜的质量也随之提高。TMAl流量太高则预沉积Al层过厚,AlN缓冲层的质量取决于由形核长大的高结晶度AlN薄膜与Al-Si回融蚀刻之间的竞争,AlN薄膜的质量随着TMAl流量的升高而降低,GaN薄膜的质量也随之降低。

关键词 材料表面与界面生长机制金属有机物化学气相沉积Al预沉积Si衬底GaN薄膜    
Abstract

Multilayered films of Al/AlN/GaN were deposited on a Si wafer by metal-organic chemical vapor deposition (MOCVD). The microstructure and crystallinity were characterized by means of optical microscopy (OM), atomic force microscopy (AFM) and X-ray diffractometer (XRD), especially in terms of the mechanisms of nucleation and growth of the produced AlN and GaN films with the variations of trimethylaluminum (TMAl) flow during Al pre-deposition process. It was observed that the pre-deposited Al layer helps the nucleation and growth of AlN film and thereafter improves the quality of GaN film. When a thin Al layer was deposited at low TMAl flow, the quality of the AlN film depends on the competition between the nucleation and growth of the high crystallinity AlN thin film with the deposition of the formed clasters of low crystallinity AlN in the gas phase on the surface of silicon wafer. The quality of the AlN film increases with increasing TMAl flow, inducing the formation of GaN film with better quality. When the Al layer is too thick at high TMAl flow, the quality of the AlN film depends on the competition between the nucleation and growth of the high crystallinity AlN thin film with the meltback-etching of Al-Si on the wafer surface. The quality of the AlN film decreases with increasing TMAl flow, inducing the formation of GaN film with worse quality.

Key wordssurface and interface in the materials    growth mechanism    MOCVD    Al pre-deposition    Si substrate    GaN film
收稿日期: 2020-05-12     
ZTFLH:  O484.4  
基金资助:国家重点研发计划项目-政府间国际科技创新合作重点专项(2016YFE0105900)
作者简介: 甄龙云,男,1994年生,硕士生
图1  TMAl流量分别为 0 sccm、41.5 sccm、59.5 sccm和77.5 sccm预沉积Al层后在Si衬底上生长的AlN薄膜的AFM照片
图2  TMAl流量不同的AlN薄膜的均方根粗糙度RRMS
图3  TMAl流量不同的预沉积Al层,相应AlN (002)面的XRD摇摆曲线的强度及其半高宽
图4  TMAl流量分别为 0 sccm、41.5 sccm、59.5 sccm和77.5 sccm的GaN薄膜的OM照片
图5  采用不同TMAl流量预沉积Al层时相应GaN (0002)面的XRD摇摆曲线的强度及其半高宽
Type & No.Reaction
G1AlCH3322AlCH33
G2AlCH33AlCH32+CH3
G3AlCH32AlCH3+CH3
S1AlCH33+SAlS+3CH3
S2AlCH32+SAlS+2CH3
S3AlCH3+SAlS+CH3
表1  不预沉积Al层时气相-表面的化学反应
Type & No.Reaction
G4AlCH33+NH3CH33Al:NH3
G5CH33Al:NH3AlCH33+NH3
G6CH33Al:NH3AlCH32:NH2+CH4
G7CH32Al:NH2AlNG+2CH4
S4AlS+NH3+3CH3AlNS+3CH4
S5xAlS+ySiSAlxSiyS
S62xSiS+2yNH32SixNyS+3yH2
S7AlNG+2SAlNS
表2  生长AlN缓冲层时气相-表面的化学反应
Type & No.Reaction
G8GaCH33GaCH32+CH3
G9GaCH32GaCH3+CH3
G10GaCH33+NH3CH33Ga:NH3
G11CH33Ga:NH3GaCH33+NH3
G12CH33Ga:NH3GaCH32:NH2+CH4
G13CH32Ga:NH2GaNG+2CH4
S8GaCH33+SGaS+3CH3
S9GaCH32+SGaS+2CH3
S10GaCH3+SGaS+CH3
S11GaS+NH3+3CH3GaNS+3CH4
S12xGaS+ySiSGaxSiyS
S132xSiS+2yNH32SixNyS+3yH2
S14GaNG+2SGaNS
表3  生长GaN缓冲层时气相-表面的化学反应
[1] Zhu D, Wallis D J, Humphreys C J. Prospects of III-nitride optoelectronics grown on Si [J]. Rep. Prog. Phys., 2013, 76(10): 106501
doi: 10.1088/0034-4885/76/10/106501 pmid: 24088511
[2] Zhang B, Liang H, Wang Y, et al. High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates [J]. J. Cryst. Growth., 2007, 298(Jan): 725
doi: 10.1016/j.jcrysgro.2006.10.170
[3] Jamil M, Grandusky J R, Jindal V, et al. Development of strain reduced GaN on Si (111) by substrate engineering [J]. Appl. Phys. Lett., 2005, 87(8): 082103
doi: 10.1063/1.2012538
[4] Bak S J, Mun D H, Jung K C, et al. Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD [J]. Electron. Mater. Lett., 2013, 9(3): 367
doi: 10.1007/s13391-013-2203-6
[5] Luo R, Xiang P, Liu M, et al. Influence of V/III ratio of low temperature grown AlN interlayer on the growth of GaN on Si substrate [J]. Jpn. J. Appl. Phys, 2011, 50(10): 105501
[6] Krishnan B, Lee S, Li H, et al. Growth of Al-xGa-(1-x)N structures on 8 in Si(111) Substrates [J]. Sens. Mater., 2013, 25(3): 205
[7] Su J, Armour E A, Krishnan B, et al. Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor [J]. J. Mater. Res., 2015, 30(19): 2846
doi: 10.1557/jmr.2015.194
[8] Krost A, Dadgar A. GaN-based optoelectronics on silicon substrates [J]. Mater. Sci. Eng. B., 2002, 93(1-3): 77
doi: 10.1016/S0921-5107(02)00043-0
[9] Cao J, Li R, Fan R, et al. The influence of the Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (111) substrate [J]. J. Cryst. Growth., 2010, 312(14): 2044
doi: 10.1016/j.jcrysgro.2010.03.032
[10] Kim J O, Hong S K, Lim K Y. Crack formation in GaN on Si(111) substrates grown by MOCVD using HT Al-preseeding and HT AlN buffer layers [J]. Phys. Status Solid., 2010, 7(7-8): 2052
[11] Chen Y, Song H, Jiang H, et al. Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism [J]. Appl. Phys. Lett., 2014, 105(19): 1
[12] Jiang Y Z,Cong H L, Xu X M, et al. Al preseeding mechanism study of growing AIN on Si (111) Substrates by MOCVD [J]. Semiconductor Technology, 2013, 038(004): 292
[12] 江忠永, 丛宏林, 徐小明等. Si衬底上MOCVD生长AIN的预铺铝机理研究 [J]. 半导体技术, 2013, 038(004): 292
[13] Varshney A, Armaou A. Optimal operation of GaN thin film epitaxy employing control vector parametrization [J]. AICHE J., 2006, 52(4): 1378
doi: 10.1002/(ISSN)1547-5905
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.