Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 401-408    DOI: 10.11901/1005.3093.2018.714
  研究论文 本期目录 | 过刊浏览 |
含钼镍基焊缝金属在硝酸溶液中的腐蚀行为
张旭1,2,3,陆善平1,2()
1. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2. 中国科学院 核用材料与安全评价重点实验室 沈阳 110016
3. 中国科学技术大学材料科学与工程学院 沈阳 110016
Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution
Xu ZHANG1,2,3,Shanping LU1,2()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

张旭,陆善平. 含钼镍基焊缝金属在硝酸溶液中的腐蚀行为[J]. 材料研究学报, 2019, 33(6): 401-408.
Xu ZHANG, Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. Chinese Journal of Materials Research, 2019, 33(6): 401-408.

全文: PDF(14434 KB)   HTML
摘要: 

研究了三种不同Mo含量的镍基焊缝熔敷金属在强氧化性介质(65%硝酸溶液)中的腐蚀行为。结果表明,熔敷金属在硝酸溶液中浸泡后发生了晶间腐蚀、点蚀以及枝晶间腐蚀等局部腐蚀。由于Mo元素促进了大尺寸Laves相在熔敷金属枝晶间的析出,在Laves相与基体之间产生了较大的电化学差异,导致Laves相在氧化性介质中腐蚀溶解,增大了熔敷金属的点蚀敏感性。在620℃焊后的去应力退火过程中,在焊缝中发生元素再分配,Mo元素降低了枝晶间Ni、Cr元素的贫化。由于枝晶间Ni、Cr元素的贫化是引起熔敷金属枝晶间腐蚀的重要因素,Mo元素降低了焊缝熔敷金属在硝酸溶液中枝晶间腐蚀敏感性。

关键词 材料失效与保护耐蚀性ASTM-262A镍基焊缝    
Abstract

Welding overlayers of three welding wires containing various concentrations of Mo have been fabricated as the experimental materials via multiple semiautomatic gas tungsten arc welding (GTAW) with cold-wire feed. Then post-weld heat treatment is carried out at 620℃ for 29 h to reduce the welding residual stress. The corrosion resistance of the as-weld and heat-treated Ni-based weld metals is assessed in 65% nitric acid aqueous solution at 117℃ for 48 h. The results show that weld metals were suffered from several types of localized corrosion in the test medium, such as intergranular corrosion (IGC), pitting corrosion and interdendritic corrosion (IDC). Mo can promote the precipitation of Laves phase in the interdendritic region. Due to the electrochemical difference between the Laves phases and the matrix, pitting susceptibility of the Ni-based weld metals increase with the increase of Mo content. Further, the IDC takes place in the heat-treated weld metals. The electrochemical difference between the dendrite and the interdendritic region is the key factor for IDC. Mo can influence the diffusion of Ni and Cr during the post heat treatment and decrease the depletion degree of Cr and Ni in the interdendritic zone, then the degree of IDC drops for the heat-treated weld metals with addition of Mo.

Key wordsmaterials failure and protection    corrosion resistance    ASTM-262A    Ni-based weld metals    Mo
收稿日期: 2018-12-17     
ZTFLH:  TG422.3  
基金资助:中国科学院重点部署项目(ZDRW-CN-2017-1);江苏省重点研发计划(BE2018113);国家自然科学基金(51474203)
作者简介: 张 旭,男,1992年生,博士生
图1  焊接接头的示意图和取样位置
No.NbMoCCrFeSiAlTiMnNi
0Mo2.44<0.010.02329.4210.70.130.140.340.79Bal.
2Mo2.371.800.02229.3810.00.150.140.260.91Bal.
4Mo2.433.850.02729.629.80.150.160.310.90Bal.
表1  不同Mo含量焊缝熔敷金属的化学成分
图2  焊态熔敷金属的金相组织
图3  焊态下不同Mo含量焊缝熔敷金属中的析出相
图4  热处理后不同成分焊缝熔敷金属的组织形貌
图5  焊缝金属的失重速率与Mo含量的关系
图6  不同Mo含量焊态熔敷金属的腐蚀形貌
图7  4Mo焊缝熔敷金属点蚀坑截面的形貌
图8  热处理态不同Mo含量焊缝熔敷金属的腐蚀形貌
图9  热处理态熔敷金属枝晶间元素的分布
[1] Wei X, Xu M J, Wang Q Z, et al. Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay [J]. Mater. Des., 2016, 110: 90
[2] Nishimoto K, Saida K, Okauchi H. Microcracking in multipass weld metal of alloy 690 Part 1–Microcracking susceptibility in reheated weld metal [J]. Sci. Technol. Weld. Join., 2006, 11: 455
[3] MoW L. Effects of B, Ti, and Nb on the microstructure, defects and properties of Ni-base alloy weld metals [D]. Beijing: University of Chinese Academy of Sciences, 2015
[3] (莫文林. B、Ti和Nb对镍基合金焊缝金属组织、缺陷和性能的影响 [D]. 北京: 中国科学院大学, 2015)
[4] Li Y F, Wang J Q, Han E H, et al. Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld [J]. J. Mater. Sci. Technol., 2019, 35: 545
[5] Dong Y, Gao Z Y. Development of nuclear power industry and research of alloy inconel 690 in China [J]. Spec. Steel Technol., 2004, 9(3): 45
[5] (董 毅, 高志远. 我国核电事业的发展与Inconel 690合金的研制 [J]. 特钢技术, 2004, 9(3): 45)
[6] Diercks D R, Shack W J, Muscara J. Overview of steam generator tube degradation and integrity issues [J]. Nucl. Eng. Des., 1999, 194: 19
[7] Wang Z J, Zheng W J, Song Z G, et al. Effect of solution treatment on structure and mechanical properties of nickel base alloy 690 [J]. Spec. Steel, 2011, 32(4): 67
[7] (王子君, 郑文杰, 宋志刚等. 固溶处理对690镍基合金组织和力学性能的影响 [J]. 特殊钢, 2011, 32(4): 67)
[8] Kiser S D, Zhang R, Baker B A. A new welding material for improved resistance to ductility dip cracking [A]. Proceedings of the 8th International Conference on Trends in Welding Research [C]. Pine-Mountain, GA, USA: ASM, 2009
[9] McCracken S L, Alexandrov B T, Lippold J C, et al. Hot cracking study of high chromium nickel-base weld filler metal 52MSS (ERNiCrFe-13) for nuclear applications [A]. Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference [C]. Bellevue, Washington, USA: American Society of Mechanical Engineers, 2010
[10] Yushchenko K, Savchenko V, Chervyakov N, et al. Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals inconel 52 and 52 Mss [J]. Weld. World, 2011, 55(9-10): 28
[11] Jeng S L, Chang Y H. The influence of Nb and Mo on the microstructure and mechanical properties of Ni-Cr-Fe GTAW welds [J]. Mater. Sci. Eng., 2012, 555A: 1
[12] Mois? B. Influence of chemical composition on stainless steels mechanical properties [A]. Proceedings of the 13th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering [C]. Catania, Sicily, Italy: World Scientific and Engineering Academy and Society, 2011
[13] Liu H Z, Li X Y, He D Y. Studies on corrosion resistant property of Ni-Cr-Mo system superalloy [J]. Sciencep. Online, 2008, 1: 13
[13] (刘海璋, 李晓延, 贺定勇. 镍基合金析出相及其合金耐蚀性能的研究 [J]. 中国科技论文在线, 2008, 1: 13)
[14] Wu D J, Fan C, Liu S B, et al. Corrosion performance of laser welding on dissimilar materials Hastelloy C-276/316L [J]. Chin. J. Nonferrous Met., 2014, 24: 441
[14] (吴东江, 范 聪, 刘士博等. Hastelloy C-276/316L激光异质焊焊缝腐蚀性能 [J]. 中国有色金属学报, 2014, 24: 441)
[15] Zhang X, Li D Z, Li Y Y, et al. Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 928
[16] Di X J, Chen B. Solidification behaviour of a high chromium nickel base alloy weld deposited metal [J]. Sci. Technol. Weld. Join., 2015, 20: 325
[17] Du N, Tian W M, Zhao Q, et al. Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5% NaCl solution [J]. Acta Metall. Sin., 2012, 48: 807
[17] (杜 楠, 田文明, 赵 晴等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理 [J]. 金属学报, 2012, 48: 807)
[18] Sun J L, Zou D, Jin J, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31(9): 665
[18] (孙京丽, 邹 丹, 金 晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31(9): 665)
[19] Zhao P. Application of molybdenum in stainless steel [J]. China Molybd. Ind., 2004, 28(5): 3
[19] (赵 朴. 钼在不锈钢中的应用 [J]. 中国钼业, 2004, 28(5): 3)
[20] Zhang C L, Xiong X H, Zheng Z J, et al. Influence of stabilization treatment on the intergranular corrosion susceptibility of super304H austenitic heat-resistant steel [J]. Chin. J. Mater. Res., 2013, 27(6): 411
[20] (张春雷, 熊夏华, 郑志军等. 稳定化处理对Super304H奥氏体耐热钢晶间腐蚀敏感性的影响 [J]. 材料研究学报, 2013, 27(6): 411)
[21] Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis [J]. Metall. Mater. Trans., 2003, 34A: 1891
[22] Tsai W T, Yu C L, Lee J I. Effect of heat treatment on the sensitization of Alloy 182 weld [J]. Scr. Mater., 2005, 53: 505
[1] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] 廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[6] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] 姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[10] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.
[11] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[14] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.