|
|
原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能 |
姜海超1( ), 安昊东1, 杨静1, 苏玉金1, 李泽1, 张滨2 |
1.河北科技大学化学与制药工程学院 石家庄 050018 2.河北化工医药职业技术学院 实验实训中心 石家庄 050026 |
|
In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance |
JIANG Haichao1( ), AN Haodong1, YANG Jing1, SU Yujin1, LI Ze1, ZHANG Bin2 |
1.Hebei University of Science & Technology, College of Chemical and Pharmaceutical, Shijiazhuang 050018, China 2.Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China |
引用本文:
姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
Haichao JIANG,
Haodong AN,
Jing YANG,
Yujin SU,
Ze LI,
Bin ZHANG.
In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance[J]. Chinese Journal of Materials Research, 2022, 36(12): 900-906.
1 |
Lu S, Hu Y, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications [J]. Journal of the American Chemical Society, 2017, 139(47): 17082
doi: 10.1021/jacs.7b07918
pmid: 29095604
|
2 |
Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications [J]. Advanced Materials, 2017, 29(14): 1605838
doi: 10.1002/adma.201605838
|
3 |
Chen Y, Yu G, Chen W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2017, 139(36): 12370
doi: 10.1021/jacs.7b06337
pmid: 28686430
|
4 |
Karunadasa H I, Chang C J, Long J R. A molecular molybdenum-oxo catalyst for generating hydrogen from water [J]. Nature, 2010, 464(7293): 1329
doi: 10.1038/nature08969
|
5 |
Zhang Z, Zhao Z, Hou Y, et al. Aqueous platinum(ii)‐cage‐based light‐harvesting system for photocatalytic cross‐coupling hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(26): 8862
doi: 10.1002/anie.201904407
|
6 |
Pi Y, Shao Q, Wang P, et al. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting [J]. Advanced Functional Materials, 2017, 27(27): 1700886
doi: 10.1002/adfm.201700886
|
7 |
Zhao Y, LI J, Yang D H, et al. Preparation of MoS2/Y zeolite microbial electrolysis cell cathode materialand its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2021, 05: 2695
|
7 |
赵 煜, 李 佳, 杨冬花 等. MoS2/Y分子筛微生物电解池阴极材料制备及其电化学性能 [J]. 化工进展, 2021, 05: 2695
|
8 |
Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2015, 3(29): 14942
doi: 10.1039/C5TA02974K
|
9 |
Hug S, Stegbauer L, Oh H, et al. Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage [J]. Chemistry of Materials, 2015, 27(23): 8001
doi: 10.1021/acs.chemmater.5b03330
|
10 |
Gao X, Qi J, Wan S, et al. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution [J]. Small, 2018, 14(48): 1803361
doi: 10.1002/smll.201803361
|
11 |
Yan Y, Xia B, Xu Z, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction [J]. ACS Catalysis, 2014, 4(6): 1693
doi: 10.1021/cs500070x
|
12 |
Gao X, Dong Y, Li S, et al. MOFs and COFs for batteries and supercapacitors [J]. Electrochemical Energy Reviews, 2019, 3(1): 81
doi: 10.1007/s41918-019-00055-1
|
13 |
Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions [J]. Chemical Reviews, 2020, 120(16): 8814
doi: 10.1021/acs.chemrev.9b00550
pmid: 31967791
|
14 |
Gao Q, Li X, Ning G H, et al. Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage [J]. Chemistry of Materials, 2018, 30(5): 1762
doi: 10.1021/acs.chemmater.8b00117
|
15 |
Puthiaraj P, Lee Y R, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis [J]. Journal of Materials Chemistry A, 2016, 4(42): 16288
doi: 10.1039/C6TA06089G
|
16 |
Bhunia S, Das S K, Jana R, et al. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23843
|
17 |
Gao Y F, Song Y L, Wang Y P, et al. Preparation, characterization and electrochemical performance in H2SO4 electrolyte of PbSO4/AC [J]. Chinese Journal of Materials Research, 2013, 5: 539
|
17 |
高云芳, 宋云龙, 王艳平 等. PbSO4/活性炭复合材料的制备和电化学性能 [J]. 材料研究学报, 2013, 5: 539
|
18 |
Tian X, Zhao P, Sheng W. Hydrogen evolution and oxidation: mechanistic studies and material advances [J]. Advanced Materials, 2019, 31(31): 1808066
doi: 10.1002/adma.201808066
|
19 |
Zhou M, Bao S, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles [J]. Journal of the American Chemical Society, 2019, 141(18), 7327
doi: 10.1021/jacs.8b13366
pmid: 31017772
|
20 |
Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: design, synthesis and application [J]. Chemical Society Reviews, 2013, 42(20), 8012
doi: 10.1039/c3cs60160a
pmid: 23846024
|
21 |
Lee J S M, Cooper A I. Advances in Conjugated Microporous Polymers [J]. Chemical Reviews, 2020, 120(4), 2171
doi: 10.1021/acs.chemrev.9b00399
|
22 |
Qiao S, Zhang B, Li Q, et al. Pore surface engineering of covalent triazine frameworks@MoS2 electrocatalyst for the hydrogen evolution reaction [J]. Chem Sus Chem, 2019, 12(22), 5032
doi: 10.1002/cssc.201902582
|
23 |
Qiao S, Zhao J, Zhang B, et al. Micrometer-scale biomass carbon tube matrix auxiliary MoS2 heterojunction for electrocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32019
doi: 10.1016/j.ijhydene.2019.10.117
|
24 |
Hu D, Zhao T, Ping X, et al. Unveiling the layer-dependent catalytic activity of PtSe 2 atomic crystals for the hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(21), 6977
doi: 10.1002/anie.201901612
|
25 |
Li Z, Feng Y, Liang Y L, et al. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction [J]. Advanced Materials, 2020, 32(25): 1908521
doi: 10.1002/adma.201908521
|
26 |
Buyukcakir O, Yuksel R, Jiang Y, et al. Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties [J]. Angewandte Chemie International Edition, 2019, 58(3): 872
doi: 10.1002/anie.201813075
|
27 |
Huang Y, Nielsen R J, Goddard W A. Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics [J]. Journal of the American Chemical Society, 2018, 140(48): 16773
doi: 10.1021/jacs.8b10016
|
28 |
Xu Q, Liu Y, Jiang H, et al. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation [J]. Advanced Energy Materials, 2018, 9(2): 1802553
doi: 10.1002/aenm.201802553
|
29 |
Zhou Y, Silva J L, Woods J M, et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity [J]. Advanced Materials, 2018, 30(18): 1706076
doi: 10.1002/adma.201706076
|
30 |
Chen Z, Wu R, Liu Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction [J]. Advanced Materials, 2018, 30(30): 1802011
doi: 10.1002/adma.201802011
|
31 |
Tang S, Zeng L, Lei A, et al. Oxidative R1-H/R2-H Cross-coupling with hydrogen evolution [J]. Journal of the American Chemical Society, 2018, 140(41): 13128
doi: 10.1021/jacs.8b07327
|
32 |
Alexa P, Lombardi J M, Abufager P, et al. Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer [J]. Angewandte Chemie International Edition, 2020, 59(22): 8411
doi: 10.1002/anie.201915855
|
33 |
Liu Y, Zhou X, Ding T, et al. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production [J]. Nanoscale, 2015, 7(43): 18004
doi: 10.1039/C5NR03810C
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|