Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 900-906    DOI: 10.11901/1005.3093.2021.263
  研究论文 本期目录 | 过刊浏览 |
原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能
姜海超1(), 安昊东1, 杨静1, 苏玉金1, 李泽1, 张滨2
1.河北科技大学化学与制药工程学院 石家庄 050018
2.河北化工医药职业技术学院 实验实训中心 石家庄 050026
In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance
JIANG Haichao1(), AN Haodong1, YANG Jing1, SU Yujin1, LI Ze1, ZHANG Bin2
1.Hebei University of Science & Technology, College of Chemical and Pharmaceutical, Shijiazhuang 050018, China
2.Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
引用本文:

姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
Haichao JIANG, Haodong AN, Jing YANG, Yujin SU, Ze LI, Bin ZHANG. In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance[J]. Chinese Journal of Materials Research, 2022, 36(12): 900-906.

全文: PDF(5499 KB)   HTML
摘要: 

合成一种三环喹唑啉的共轭微孔聚合物(TQ-CMPs)并用水热法使二硫化钼原位生长在其骨架表面,制备出一种新型复合电催化析氢催化剂并研究了它的电催化析氢活性。结果表明,TQ-CMPs与MoS2的质量比为2∶1的催化剂具有优异的电催化析氢活性,其过电势为71 mV,Tafel斜率为52 mV·dec-1。比表面积较大的TQ-CMPs,使MoS2的分散度提高、避免了MoS2的堆积和聚集并使更多的MoS2边缘暴露,从而提高了催化剂的效率。TQ-CMPs丰富的孔道结构和延伸的π共轭骨架,有利于质量运输和电荷转移。

关键词 复合材料共轭微孔聚合物二硫化钼电化学析氢电催化    
Abstract

Tripolyquinazoline-based conjugated microporous polymers (TQ-CMPs) were synthesized, and molybdenum sulfide (MoS2) nanoparticles grown in-situ on the surface of TQ-CMPs via hydrothermal method as a new type of composite electrocatalyst for hydrogen evolution reaction. Its electrocatalytic hydrogen evolution activity was studied. As a result, when the mass ratio of the TQ-CMPs and MoS2 is 2∶1 the electrocatalyst has excellent electrocatalytic activity for an overpotential of 71 mV and a Tafel slope of 52 mV·dec-1 for hydrogen evolution reaction. TQ-CMPs have large specific surface areas, which improve the dispersion of MoS2. The accumulation of MoS2 was avoided effectively, and more MoS2 edges was exposed, which improved the electrocatalytic activity. In addition, the abundant porous structure and extended π-conjugated framework of TQ-CMPs facilitated mass transport and charge transfer.

Key wordscomposits    conjugated microporous polymers    molybdenum sulfide    hydrogen evolution reaction    electrocatalysis
收稿日期: 2021-04-25     
ZTFLH:  TB322  
基金资助:河北省重点研发计划(19273808D);石家庄市科学技术研究与发展计划(201240253A)
作者简介: 姜海超,男,1982年生,博士
图1  TQ-CMPs 的FI-IR谱
图2  在77K测定的N2吸附和脱附等温线(a)和孔隙宽度分布(b)
图3  MoS2、TQ-CMPs@MoS2和TQ-CMP的XRD谱
图4  TQ-CMPs(a)和TQ-CMPs@MoS2 2∶1(b)的SEM图;TQ-CMPs(c)和TQ-CMPs@MoS2 2∶1(d)的TEM图;TQ-CMPs @MoS2 2∶1(e, f)的HRTEM图
图5  催化剂的电化学性能(a)0.5 mol·L?1 H2SO4中的LSVs,(b)由LSVs计算得到的Tafel斜率,(c)催化剂的Nyquist图,TQ-CMPs@MoS2 2∶1的稳定性(d)和循环伏安曲线(e),催化剂的双层电容(f)
1 Lu S, Hu Y, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications [J]. Journal of the American Chemical Society, 2017, 139(47): 17082
doi: 10.1021/jacs.7b07918 pmid: 29095604
2 Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications [J]. Advanced Materials, 2017, 29(14): 1605838
doi: 10.1002/adma.201605838
3 Chen Y, Yu G, Chen W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2017, 139(36): 12370
doi: 10.1021/jacs.7b06337 pmid: 28686430
4 Karunadasa H I, Chang C J, Long J R. A molecular molybdenum-oxo catalyst for generating hydrogen from water [J]. Nature, 2010, 464(7293): 1329
doi: 10.1038/nature08969
5 Zhang Z, Zhao Z, Hou Y, et al. Aqueous platinum(ii)‐cage‐based light‐harvesting system for photocatalytic cross‐coupling hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(26): 8862
doi: 10.1002/anie.201904407
6 Pi Y, Shao Q, Wang P, et al. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting [J]. Advanced Functional Materials, 2017, 27(27): 1700886
doi: 10.1002/adfm.201700886
7 Zhao Y, LI J, Yang D H, et al. Preparation of MoS2/Y zeolite microbial electrolysis cell cathode materialand its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2021, 05: 2695
7 赵 煜, 李 佳, 杨冬花 等. MoS2/Y分子筛微生物电解池阴极材料制备及其电化学性能 [J]. 化工进展, 2021, 05: 2695
8 Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2015, 3(29): 14942
doi: 10.1039/C5TA02974K
9 Hug S, Stegbauer L, Oh H, et al. Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage [J]. Chemistry of Materials, 2015, 27(23): 8001
doi: 10.1021/acs.chemmater.5b03330
10 Gao X, Qi J, Wan S, et al. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution [J]. Small, 2018, 14(48): 1803361
doi: 10.1002/smll.201803361
11 Yan Y, Xia B, Xu Z, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction [J]. ACS Catalysis, 2014, 4(6): 1693
doi: 10.1021/cs500070x
12 Gao X, Dong Y, Li S, et al. MOFs and COFs for batteries and supercapacitors [J]. Electrochemical Energy Reviews, 2019, 3(1): 81
doi: 10.1007/s41918-019-00055-1
13 Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions [J]. Chemical Reviews, 2020, 120(16): 8814
doi: 10.1021/acs.chemrev.9b00550 pmid: 31967791
14 Gao Q, Li X, Ning G H, et al. Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage [J]. Chemistry of Materials, 2018, 30(5): 1762
doi: 10.1021/acs.chemmater.8b00117
15 Puthiaraj P, Lee Y R, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis [J]. Journal of Materials Chemistry A, 2016, 4(42): 16288
doi: 10.1039/C6TA06089G
16 Bhunia S, Das S K, Jana R, et al. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23843
17 Gao Y F, Song Y L, Wang Y P, et al. Preparation, characterization and electrochemical performance in H2SO4 electrolyte of PbSO4/AC [J]. Chinese Journal of Materials Research, 2013, 5: 539
17 高云芳, 宋云龙, 王艳平 等. PbSO4/活性炭复合材料的制备和电化学性能 [J]. 材料研究学报, 2013, 5: 539
18 Tian X, Zhao P, Sheng W. Hydrogen evolution and oxidation: mechanistic studies and material advances [J]. Advanced Materials, 2019, 31(31): 1808066
doi: 10.1002/adma.201808066
19 Zhou M, Bao S, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles [J]. Journal of the American Chemical Society, 2019, 141(18), 7327
doi: 10.1021/jacs.8b13366 pmid: 31017772
20 Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: design, synthesis and application [J]. Chemical Society Reviews, 2013, 42(20), 8012
doi: 10.1039/c3cs60160a pmid: 23846024
21 Lee J S M, Cooper A I. Advances in Conjugated Microporous Polymers [J]. Chemical Reviews, 2020, 120(4), 2171
doi: 10.1021/acs.chemrev.9b00399
22 Qiao S, Zhang B, Li Q, et al. Pore surface engineering of covalent triazine frameworks@MoS2 electrocatalyst for the hydrogen evolution reaction [J]. Chem Sus Chem, 2019, 12(22), 5032
doi: 10.1002/cssc.201902582
23 Qiao S, Zhao J, Zhang B, et al. Micrometer-scale biomass carbon tube matrix auxiliary MoS2 heterojunction for electrocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32019
doi: 10.1016/j.ijhydene.2019.10.117
24 Hu D, Zhao T, Ping X, et al. Unveiling the layer-dependent catalytic activity of PtSe 2 atomic crystals for the hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(21), 6977
doi: 10.1002/anie.201901612
25 Li Z, Feng Y, Liang Y L, et al. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction [J]. Advanced Materials, 2020, 32(25): 1908521
doi: 10.1002/adma.201908521
26 Buyukcakir O, Yuksel R, Jiang Y, et al. Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties [J]. Angewandte Chemie International Edition, 2019, 58(3): 872
doi: 10.1002/anie.201813075
27 Huang Y, Nielsen R J, Goddard W A. Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics [J]. Journal of the American Chemical Society, 2018, 140(48): 16773
doi: 10.1021/jacs.8b10016
28 Xu Q, Liu Y, Jiang H, et al. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation [J]. Advanced Energy Materials, 2018, 9(2): 1802553
doi: 10.1002/aenm.201802553
29 Zhou Y, Silva J L, Woods J M, et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity [J]. Advanced Materials, 2018, 30(18): 1706076
doi: 10.1002/adma.201706076
30 Chen Z, Wu R, Liu Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction [J]. Advanced Materials, 2018, 30(30): 1802011
doi: 10.1002/adma.201802011
31 Tang S, Zeng L, Lei A, et al. Oxidative R1-H/R2-H Cross-coupling with hydrogen evolution [J]. Journal of the American Chemical Society, 2018, 140(41): 13128
doi: 10.1021/jacs.8b07327
32 Alexa P, Lombardi J M, Abufager P, et al. Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer [J]. Angewandte Chemie International Edition, 2020, 59(22): 8411
doi: 10.1002/anie.201915855
33 Liu Y, Zhou X, Ding T, et al. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production [J]. Nanoscale, 2015, 7(43): 18004
doi: 10.1039/C5NR03810C
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.