Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 271-280    DOI: 10.11901/1005.3093.2022.271
  研究论文 本期目录 | 过刊浏览 |
等离子处理对医用镁合金表面聚合物防护涂层的影响
李鹏宇1,2, 刘子童2,3, 亢淑梅1(), 陈姗姗2()
1.辽宁科技大学材料与冶金学院 鞍山 114051
2.中国科学院金属研究所 沈阳 110016
3.沈阳理工大学材料科学与工程学院 沈阳 110159
Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy
LI Pengyu1,2, LIU Zitong2,3, KANG Shumei1(), CHEN Shanshan2()
1.School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
引用本文:

李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
Pengyu LI, Zitong LIU, Shumei KANG, Shanshan CHEN. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. Chinese Journal of Materials Research, 2023, 37(4): 271-280.

全文: PDF(8241 KB)   HTML
摘要: 

用匀速提拉法在氟化处理的AZ31镁合金表面制备PBA防护涂层,然后再进行等离子处理。使用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、傅里叶红外测试(FT-IR)和接触角测量仪等手段对其表征,研究了等离子处理对PBA防护涂层表面的微观形貌、物相组成以及表面润湿性的影响;用动电位极化曲线(PD)和电化学阻抗谱(EIS)表征防护涂层处理镁合金的耐蚀性;对在等离子处理前后样品表面细胞的铺展进行比较,以验证防护涂层的生物活性。结果表明,等离子处理使PBA防护涂层表面粗糙化提高了氧原子的占比,从而显著提高了防护涂层表面的浸润性;等离子处理在一定程度上降低了防护涂层处理镁合金的耐蚀性,但是与未经防护处理的AZ31镁合金和氟化处理的镁合金相比其电流密度仍高2~3个数量级,表明防护涂层能有效防护镁合金基体;等离子处理,使样品表面黏附的细胞显著增多。

关键词 金属材料镁合金防护涂层等离子处理润湿性耐蚀性    
Abstract

Polybutylene adipate (PBA) protective coating was prepared on fluorinated AZ31 Mg-alloy by uniform speed lifting method and then the coated Mg-alloys were subjected to plasma treatment with different power and time. The effect of plasma treatment on the surface morphology, phase composition and surface wettability of PBA protective coating were characterized by means of scanning electron microscope (SEM), X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscope (FT-IR) and contact angle measuring instrument. The corrosion resistance of the coated Mg-alloy was characterized by potentiodynamic polarization curve measurement and electrochemical impedance spectroscope (EIS). The biological activity of the protective coatings was verified by comparing the cells adhesion on the coating surface before and after plasma treatment. Results show that plasma treatment could increase the surface roughness of PBA protective coating, increase the oxygen atom proportion, and thereby enhance the wettability of the coating surface obviously. However, plasma treatment reduced the corrosion resistance of the PBA coated Mg-alloy to a certain extent, but its corrosion current density was 2~3 orders of magnitude lower than that of the AZ31 Mg-alloy without protective coating and the fluorinated ones. In sum, the PBA protective coating can provide effective protection for Mg-alloy substrate, and the EIS curve also showed the same results. Besides, Cell adhesion on the surface of plasma treated samples increased significantly.

Key wordsmetallic materials    magnesium alloy    protective coating    plasma treatment    wettability    corrosion resistance
收稿日期: 2022-05-11     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51901227);国家自然科学基金(81873918);中国科学院青年创新促进会项目(2019194)
作者简介: 李鹏宇, 男,1999年生,硕士生
MaterialsAlSiCaZnMnFeCuNiMg
AZ312.5~3.50.080.040.6~1.40.2~1.00.0030.010.001Bal.
表1  AZ31镁合金的化学成分
NaClKClNa2HPO4·12H2OKH2PO4
8.00.22.890.2
表2  PBS溶液的配方
图1  等离子处理前后PBA防护涂层的微观形貌
图2  等离子处理前后防护涂层的XPS谱
Sample statusElementIntegral areaProportion of each element
Without plasma treatmentC1s88447.1948.66%
O1s93320.8451.34%
Treated with 60 W powerfor 60 sC1s90286.2643.75%
O1s116098.7456.25%
Treated with 60 W power for 180 sC1s89516.2440.84%
O1s129666.159.16%
Treated with 60 W power for 300 sC1s85391.1640.15%
O1s127311.6359.85%
表3  等离子处理前后防护涂层中C和O元素的占比
图3  不同等离子处理后防护涂层的FT-IR谱
图4  未经等离子处理的PBA涂层和经60 W/300 s等离子处理的PBA涂层中C和O元素的分峰处理
Sample groupC—O integral areaProportion of C—OC=O integral areaProportion of C=O
Without plasma treatment54677.8659.99%36461.4240.01%

Plasma treatment power

of 60 W for 300 s

55343.8145.29%66846.1354.71%
表4  分峰后各含氧官能团的积分面积
图5  等离子功率相同处理时间不同的PBA涂层的接触角和水滴形状
图6  未经等离子处理的PBA涂层和功率不同的等离子处理相同时间的PBA涂层的接触角和水滴形状
图7  用不同等离子处理后PBA防护涂层镁合金的Tafel曲线
SamplesMgFPBA60 W/20 s60 W/40 s60 W/60 s60 W/180 s60 W/300 s90 W/300 s120 W/300 s
Icorr/A∙cm-21.280×10-52.070×10-64.920×10-93.096×10-81.149×10-81.034×10-81.216×10-82.385×10-83.162×10-83.664×10-8
Ecorr / V-1.50-1.51-1.52-1.66-1.61-1.58-1.63-1.64-1.66-1.67
Pi / mm∙a-129.2484.720.01120.07070.02630.02360.02780.05450.07230.0837
表5  用不同等离子处理后PBA防护涂层镁合金的动电位极化曲线拟合结果
图8  等离子处理前后PBA防护涂层镁合金电化学测试后的宏观形貌
图9  不同等离子处理后PBA防护涂层处理镁合金的Nyquist曲线
图10  镁合金基体和氟化处理的镁合金以及氟化涂层+PBA防护涂层处理镁合金的等效电路模型
SamplesRs / Ω∙cm2C / F∙cm-2Rf / Ω∙cm2CPE/F∙cm-2nRct / Ω∙cm2RL / Ω∙cm2L / H∙cm2
Mg1.993×10-4--1.503×10-50.81622.812×1041.666×1047.598×104
F4.236×10-4--9.100×10-50.92918.003×1045.672×1049.134×104
PBA1.336×10-46.824×10-102.168×1057.742×10-80.50013.487×107--
60 W/20 s5.552×10-47.176×10-109.280×1031.680×10-70.51497.169×106--
60 W/40 s1.520×10-41.005×10-105.886×1044.119×10-70.53588.251×106--
60 W/60 s6.237×10-47.070×10-101.179×1046.006×10-70.48322.044×107--
60 W/180 s5.367×10-42.578×10-109.079×1031.122×10-70.54938.132×106--
60 W/300 s8.897×10-46.154×10-102.009×1041.299×10-70.49467.548×106--
90 W/300 s7.762×10-41.347×10-101.619×1041.445×10-70.52715.980×106--
120 W/300 s8.545×10-43.271×10-102.399×1041.452×10-70.40196.861×106--
表6  不同等离子处理后PBA防护涂层样品的等效电路拟合结果
图11  等离子处理前后PBA防护涂层镁合金表面人脐静脉内皮细胞的黏附
图12  在O2等离子作用下PBA防护涂层的反应示意图
1 Zhou J, Ding Y. Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos. (Clin. Decis. Making Forum Ed.), 2006, 27(4): 36
1 周 江, 丁 彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36
2 Guo Y Y, Yu Z W, Zhang J. Research hotspots of magnesium alloy biomaterials in an in vivo animal[J]. Chin. J. Tissue Eng. Res., 2022, 26(22): 3556
2 郭洋妍, 喻正文, 张 剑. 镁合金生物材料动物体内实验的研究热点[J]. 中国组织工程研究, 2022, 26(22): 3556
3 DeCarlo C, Boitano L, Latz C, et al. Patients with failed femoropopliteal covered stents are more likely to present with acute limb ischemia than those with failed femoropopliteal bare-metal stents[J]. J. Vasc. Surg., 2020, 72(5): e363
4 Wang Y Y, Wu H M, Zhen W Q, et al. Research progress of biodegradable vascular stent[J]. Chin. J. Med. Instrument., 2021, 45(4): 410
4 王洋洋, 吴红枚, 甄文强 等. 生物可降解血管支架研究进展[J]. 中国医疗器械杂志, 2021, 45(4): 410
5 Ishizaki T, Masuda Y, Teshima K. Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection[J]. Surf. Coat. Technol., 2013, 217: 76
doi: 10.1016/j.surfcoat.2012.11.076
6 Zhang X P, Chen G. Immersion and electrochemical tests study on corrosion resistance of chrome-free chemical conversion film on AZ91D Mg alloy in 5 wt% NaCl solution[J]. Surf. Rev. Lett., 2005, 12(3): 417
doi: 10.1142/S0218625X05007244
7 Zain M Z M, Illias S, Mat Salleh M, et al. Improvement of corrosion resistance of rare earth element (REE)-based anodic oxidation coating on AZ91D magnesium alloy[J]. Appl. Mech. Mater., 2012, 187: 210
doi: 10.4028/www.scientific.net/AMM.187
8 Jiang X Z, Lu S, Tang L, et al. Influence of negative voltage on micro-arc oxidation of magnesium alloy under two steps voltage-increasing mode[J]. Key Eng. Mater., 2013, 575-576: 472
doi: 10.4028/www.scientific.net/KEM.575-576
9 Guo Q K, Lü Z Q, Zhang Y, et al. In vivo degradation behavior and histocompatibility of a novel fully biodegradable material: Poly trimethylene carbonate-Co-D, L-Lactide[J]. J. Clin. Rehab. Tissue Eng. Res., 2011, 15(34): 6368
9 郭清奎, 吕志前, 张 袆 等. 新型可完全降解材料聚外消旋乳酸-三亚甲基碳酸酯聚合物体内降解行为和组织相容性[J]. 中国组织工程研究与临床康复, 2011, 15(34): 6368
10 Lu R P, Zou Z C, Zhao F N, et al. Role and application of polylactic acid-hydroxyacetic acid copolymer scaffolds in bone defect repair and regeneration[J]. Chin. J. Tissue Eng. Res., 2022, 26(28): 4525
10 卢仁培, 邹志晨, 赵丰年 等. 聚乳酸-羟基乙酸共聚物复合支架在骨缺损修复再生中的作用与应用[J]. 中国组织工程研究, 2022, 26(28): 4525
11 Liu J, Zhai H Y, Sun Y N, et al. Developing high strength poly (L-lactic acid) nanofiber yarns for biomedical textile materials: A comparative study of novel nanofiber yarns and traditional microfiber yarns[J]. Mater. Lett., 2021, 300: 130229
doi: 10.1016/j.matlet.2021.130229
12 Yao F L, Liu C, Meng J H, et al. Poly(lactic acid)s with a controlled degradability[J]. Polym. Bull., 2003, (3): 47
12 姚芳莲, 刘 畅, 孟继红 等. 降解可控乳酸类聚合物[J]. 高分子通报, 2003, (3): 47
13 Turalija M, Bischof S, Budimir A, et al. Antimicrobial PLA films from environment friendly additives[J]. Composites, 2016, 102B: 94
14 Sui S Y, Ni G H, Xie H B, et al. Surface modification of polymethyl methacrylate by capacitive-coupled plasmas[J]. Chin. J. Vac. Sci. Technol., 2019, 39(8): 617
14 隋思源, 倪国华, 谢洪兵 等. 不同气氛低气压电容耦合放电等离子体对聚甲基丙烯酸甲酯表面的改性[J]. 真空科学与技术学报, 2019, 39(8): 617
15 Wang X P, Li W M, Wu Q Q, et al. Influence of plasma treatment on the surface property of polypropylene mesh for hernia repair[J]. J. Biomed. Eng. Res., 2020, 39(2): 167
15 王宪朋, 李文明, 吴倩倩 等. 等离子体处理技术对疝修补用聚丙烯网表面性能的影响[J]. 生物医学工程研究, 2020, 39(2): 167
16 Jiang N, Zhao L F, Gan Z H. Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals[J]. Polym. Degrad. Stab., 2010, 95(6): 1045
doi: 10.1016/j.polymdegradstab.2010.03.004
17 Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
doi: 10.1016/j.electacta.2014.01.135
18 Walter R, Kannan M B. In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid[J]. Mater. Lett., 2011, 65(4): 748
doi: 10.1016/j.matlet.2010.11.051
19 Jayaraj J, Amruth Raj S, Srinivasan A, et al. Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy[J]. Corros. Sci., 2016, 113: 104
doi: 10.1016/j.corsci.2016.10.010
20 Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys[J]. Electrochim. Acta, 2018, 260: 55
doi: 10.1016/j.electacta.2017.11.091
21 Gao F. Surface modification to modulate electrochemical corrosion behavior and biocompatibility of magnesium alloys biocompatibility[D]. Huaian: Huaiyin Institute of Technology, 2020
21 高 凡. 表面改性调控镁合金电化学腐蚀行为及生物相容性的研究[D]. 淮安: 淮阴工学院, 2020
22 Yu Y Q, Ding T T, Xue Y, et al. Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel[J]. J. Mater. Chem., 2016, 4B(4) : 801
23 Hong L, Liang X, Wei W, et al. Preparation and properties of biodegradable coating on magnesium alloy[J]. Surf. Technol., 2020, 49(11): 151
23 洪 柳, 梁 雪, 魏 玮 等. 镁合金表面可降解涂层的制备及其性能[J]. 表面技术, 2020, 49(11): 151-160.
24 Yi S, Yin G F, Zheng C Q. Relationship between surface interfacial properties of biomaterials and their hemocompatibility[J]. Chin. J. Oral Implantol., 2003, 8(2): 83
24 易 树, 尹光福, 郑昌琼. 生物材料表面界面特性与其血液相容性的关系[J]. 中国口腔种植学杂志, 2003, 8(2): 83
25 Jaleh B, Parvin P, Wanichapichart P, et al. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma[J]. Appl. Surf. Sci., 2010, 257(5): 1655
doi: 10.1016/j.apsusc.2010.08.117
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.