Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 264-270    DOI: 10.11901/1005.3093.2021.450
  研究论文 本期目录 | 过刊浏览 |
回归时间对2024铝合金的组织和耐蚀性能的影响
廖鸿宇, 贾咏馨, 苏睿明(), 李广龙, 曲迎东, 李荣德
沈阳工业大学材料科学与工程学院 沈阳 110870
Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy
LIAO Hongyu, JIA Yongxin, SU Ruiming(), LI Guanglong, QU Yingdong, LI Rongde
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
Hongyu LIAO, Yongxin JIA, Ruiming SU, Guanglong LI, Yingdong QU, Rongde LI. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2023, 37(4): 264-270.

全文: PDF(4343 KB)   HTML
摘要: 

采用回归再时效处理2024铝合金并对其进行透射电镜和扫描电镜观察、硬度、晶间腐蚀和电化学腐蚀测量,研究了回归时间对2024铝合金的微观组织和耐蚀性能的影响。结果表明:经回归再时效处理的2024铝合金其主要析出强化相为S相。回归处理时间为0.2 h的合金,S相细小且呈弥散均匀分布,性能有显著的提高,硬度为147.2 HV0.5、晶间腐蚀深度为98.5 μm、自腐蚀电位为-0.64 V、自腐蚀电流密度为0.24 μA·cm-2、电阻值为31397 Ω·cm2。这表明,适当时间的回归处理有利于提高2024铝合金的硬度和耐蚀性。

关键词 金属材料2024铝合金回归再时效耐蚀性析出相    
Abstract

Good corrosion resistance of 2024 Al-alloy without reducing mechanical properties can be obtained by retrogression and re-ageing (RRA) treatment. The effect of retrogression times of 0.1 h, 0.2 h, 0.3 h, 0.4 h and 0.5 h on the microstructure and corrosion resistance of 2024 Al-alloy treated by RRA were investigated by transmission electron microscopy, scanning electron microscopy, hardness tester, intergranular corrosion test and electrochemical corrosion test. The results show that the main precipitation strengthening phase of 2024 Al-alloy by RRA treatment is S phase. When the retrogression treatment time is 0.2 h, the S phase are small and uniformly distributed, and the properties of the alloy were also significantly improved. At this time, the hardness of the alloy is 147.2 HV0.5, the intergranular corrosion depth is 98.5 μm, the free-corrosion potential is -0.64 V, the free-corrosion current density is 0.24 μA·cm-2, and the resistance value is 31397 Ω·cm2. Therefore, the appropriate retrogression time is beneficial to improve the hardness and corrosion resistance of 2024 aluminum alloy with RRA treatment.

Key wordsmetallic materials    2024 aluminum alloy    retrogression and re-aging    corrosion resistance    precipitate
收稿日期: 2021-08-13     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划(2017YFB1104000);辽宁省自然科学基金(2021-MS-235)
作者简介: 廖鸿宇,女,2001年生,本科生
CuMgMnFeSiAl
4.781.520.480.280.13Bal.
表1  实验用2024铝合金的成分(质量分数,%)
SamplePre-agingRetrogressionRe-aging
P190oC×2 h--
RRA1190oC×2 h320oC×0.1 h190oC×8 h
RRA2190oC×2 h320oC×0.2 h190oC×8 h
RRA3190oC×2 h320oC×0.3 h190oC×8 h
RRA4190oC×2 h320oC×0.4 h190oC×8 h
RRA5190oC×2 h320oC×0.5 h190oC×8 h
表2  不同编号试样的热处理工艺
图1  不同热处理后合金的硬度
图2  不同热处理后合金的IGC照片
SamplePRRA1RRA2RRA3RRA4RRA5
IGC depth / μm228.2161.498.5139.9237.4252.6
表3  不同热处理后合金的IGC深度
图3  不同热处理后合金的极化曲线
SamplePRRA1RRA2RRA3RRA4RRA5
Self-corrosion potential / V-0.73-0.68-0.64-0.67-0.70-0.71
Self-corrosion current density / μA·cm-21.530.820.240.430.951.17
表4  不同热处理后合金的极化曲线参数
图4  不同热处理后合金的Nyquist图
图5  等效电路
SamplePRRA1RRA2RRA3RRA4RRA5
Rs / Ω·cm24.365.323.764.174.555.47
Cd / F·cm21.21×10-43.18×10-57.61×10-58.87×10-58.49×10-58.39×10-5
n0.870.870.890.890.880.89
Rt / Ω·cm265152785031397297042110417608
表5  不同热处理后合金的EIS参数
图6  不同热处理后合金的明场TEM照片
1 Fan C H, Ou L, Hu Z Y, et al. Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al-Cu-Mg alloy subjected to rapid cold stamping[J]. T. Nonferr. Metal. Soc., 2019, 29(12):2455
doi: 10.1016/S1003-6326(19)65153-8
2 Wang H C, Yang H B, Liu G L, et al. Influence of Al-5Ti-0.25C refiner on microstructure and mechanical properties of 2024 alloy[J]. Mater. Rev., 2016, 30(20): 81
2 王海超, 杨化冰, 刘桂亮 等. Al-5Ti-0.25C细化剂对2024铝合金组织及力学性能的影响[J]. 材料导报, 2016, 30(20): 81
3 Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(01): 39
3 张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(01): 39
4 Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys[J]. Chin. J. Mater. Res., 2011, 25(01): 67
4 李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制[J]. 材料研究学报, 2011, 25(01): 67
5 Shi W N, Zhou H F, Zhang X F. High-strength and anti-corrosion of Al-Cu-Mg alloy by controlled ageing process[J]. Phil. Mag. Lett., 2019, 99(07): 235
doi: 10.1080/09500839.2019.1662960
6 Qu F J, Xiao B L, Cao Y, et al. Effect of aging on corrosion resistance of 2024 aluminum alloy[J]. Nonferrous Metals Processing, 2020, 49(05): 53
6 曲凤娇, 肖宝靓, 曹阳 等. 时效处理对2024铝合金腐蚀性能的影响[J]. 有色金属加工, 2020, 49(05): 53
7 Sun L, Niu F J, Wu C L, et al. Influence of precipitation microstructure change on the stress corrosion behavior of AA2024 aluminum alloy[J]. Rare Metal Mat. Eng., 2019, 48(09): 2944
7 孙 丽, 牛凤姣, 伍翠兰 等. 时效析出行为的改变对AA2024铝合金应力腐蚀行为的影响[J]. 稀有金属材料与工程, 2019, 48(09): 2944
8 Barros A, Cruz C, Silva A P, et al. Length scale of solidification microstructure tailoring corrosion resistance and microhardness in T6 heat treatment of an Al-Cu-Mg alloy[J]. Corros. Eng. Sci. Techn., 2020, 55(06): 471
doi: 10.1080/1478422X.2020.1742410
9 Zuiko I, Kaibyshev R. Aging behavior of an Al-Cu-Mg alloy[J]. J. Alloy. Compd., 2018, 759: 108
doi: 10.1016/j.jallcom.2018.05.053
10 Li H, Zhou Y, Wang Z X. Effect of aging state and Cu content on intergranular corrosion sensitivity of Al-Cu alloy[J]. Hot Working Technology, 2020: 1
10 李 海, 周 洋, 王芝秀. 时效状态及Cu含量对Al-Cu合金晶间腐蚀敏感性的影响[J]. 热加工工艺, 2020: 1
11 Zhan X, Li H Z, Liang X P, et al. Effect of non-isothermal aging on intergranular corrosion and mechanical properties of 2A14 aluminum alloy[J]. Min. Metall. Eng., 2018, 38(06): 139
11 詹 鑫, 李慧中, 粱霄鹏 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(06): 139
12 Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Mat. Sci. Eng. A-Struct., 2008, 485(01-02): 468
doi: 10.1016/j.msea.2007.08.025
13 Wu Y P, He Z Y, Zhou Z G, et al. Effect of non-isothermal retrogression and re-aging treatments on the microstructure and mechanical properties of 7050 alloy[J]. Mater. Rev., 2019, 33(S2): 394
13 吴懿萍, 何臻毅, 周志纲 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(S2): 394
14 Su R M, Qu Y D, Li X, et al. Low-temperature retrogression of spray formed 7075 alloy[J]. Chin. J. Nonferrous. Met., 2016, 26(12):2523
doi: 10.1016/S1003-6326(16)64378-9
14 苏睿明, 曲迎东, 李想 等. 喷射态7075合金欠时效低温回归处理[J]. 中国有色金属学报, 2016, 26(12): 2523
15 Peng G S, Chen K H, Chen S Y, et al. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy[J]. T. Nonferr. Metal. Soc., 2012, 22(04): 803
doi: 10.1016/S1003-6326(11)61248-X
16 Gong J, Wang M P, Zhang Q, et al. Influence of retrogression and re-aging treatment on intergranular and exfoliation corrosion of 1973 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(07): 2520
16 龚 静, 汪明朴, 张 茜 等. RRA处理对1973铝合金晶间腐蚀与剥蚀的影响[J]. 中南大学学报(自然科学版), 2012, 43(07): 2520
17 Wang X, Liu C P, Lv H B, et al. Effect of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(01): 84
17 王 鑫, 刘春鹏, 吕海波 等. 回归再时效对6082合金组织及电化学腐蚀性的影响[J]. 特种铸造及有色合金, 2019, 39(01): 84
18 Zhao G, Liu C M, Zhu L Y, et al. Retrogression and reaging treatments of 2014 alloy[J]. Journal of Materials and Metallurgy, 2003, (03): 210
18 赵 刚, 刘春明, 朱丽颖 等. 2014合金的回归再时效[J]. 材料与冶金学报, 2003, (03): 210
19 Yuan Z S, Lu Z, Xie Y H, et al. Effects of RRA treatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97[J]. Chinese J. Aeronaut., 2007, 20(02): 187
doi: 10.1016/S1000-9361(07)60031-4
20 Ward N, Tran A, Abad A, et al. The effects of retrogression and reaging on aluminum alloy 2195[J]. J. Mater. Eng. Perform., 2011, 20(06): 1003
doi: 10.1007/s11665-010-9739-5
21 Ghosh K S, Tripati K. Microstructural characterization and electrochemical behavior of AA2014 Al-Cu-Mg-Si alloy of various tempers[J]. J. Mater. Eng. Perform., 2018, 27(11): 5926
doi: 10.1007/s11665-018-3694-y
22 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Design, 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
23 Zhang J Q. Electrochemical Testing Technique[M]. Beijing: Chemical Industry Press, 2010
23 张鉴清. 电化学测试技术[M]. 北京: 化学工业出版社, 2010
24 Wen L, Wang Y M, Zhou Y, et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy[J]. Corros. Sci., 2010, 52 (08):2687
doi: 10.1016/j.corsci.2010.04.022
25 Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys[J]. Acta Mater., 2007, 55(03): 933
doi: 10.1016/j.actamat.2006.09.015
26 Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. Acta Mater., 2005, 50(04):193
27 Parel T S, Wang S C, Starink M J. Hardening of an Al-Cu-Mg alloy containing types I and II S phase precipitates[J]. Mater. Design, 2010, 31:S2
doi: 10.1016/j.matdes.2009.12.048
28 Wang S C, Starink M J. The assessment of GPB2/S'' structures in Al-Cu-Mg alloys[J]. Mat. Sci. Eng. A-Struct., 2004, 386(1-2): 156
doi: 10.1016/S0921-5093(04)00913-X
29 Li H Z, Liu R M, Liang X P, et al. Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy[J]. T. Nonferr. Metal. Soc., 2016, 26 (06): 1482
doi: 10.1016/S1003-6326(16)64253-X
30 Marceau R K W, Sha G, Lumley R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Mater., 2010, 58: 1795
doi: 10.1016/j.actamat.2009.11.021
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.