Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 409-418    DOI: 10.11901/1005.3093.2018.591
  研究论文 本期目录 | 过刊浏览 |
热障涂层陶瓷层材料LnMgAl11O19(Ln=La, Nd)粉体的性能
李滢1,2,陈小龙3,孙超1(),宫骏1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
3. 暨南大学 广州 510632
Preparation and Performance of LnMgAl11O19(Ln=La, Nd) Powders for Thermal Barrier Coating
Ying LI1,2,Xiaolong CHEN3,Chao SUN1(),Jun GONG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Jinan University, Guangzhou 510632, China
引用本文:

李滢,陈小龙,孙超,宫骏. 热障涂层陶瓷层材料LnMgAl11O19(Ln=La, Nd)粉体的性能[J]. 材料研究学报, 2019, 33(6): 409-418.
Ying LI, Xiaolong CHEN, Chao SUN, Jun GONG. Preparation and Performance of LnMgAl11O19(Ln=La, Nd) Powders for Thermal Barrier Coating[J]. Chinese Journal of Materials Research, 2019, 33(6): 409-418.

全文: PDF(6961 KB)   HTML
摘要: 

用共沉淀法制备LaMgAl11O19粉体,证明了提高沉淀温度和pH值可使前驱粉体的性能明显提高。应用差热分析和X射线法研究了磁铅石相的生成温度和粉体的结晶度;使用Scherrer 公式并结合XRD谱计算了晶粒尺寸;用扫描电镜观察了各工艺参数的前驱粉体在1500℃时效5 h后的形貌;使用Malvern ZEN3600粒度仪和Manual measurement软件分析了粉体硬团聚的尺寸分布;用Nd2O3, Gd2O3, Sm2O3替代La2O3,研究了制备多种镁基六铝酸盐粉体的可行性。结果表明:在pH值为11.5、沉淀温度为60℃条件下制备的前驱粉体,其完全相变为纯LaMgAl11O19粉体的初始温度为1440℃,比在常温下沉淀的前驱粉体降低了150℃,磁铅石相的生成效率明显提高。在1500℃时效5 h的粉体其晶粒为纳米尺度。提高沉淀温度和pH值有利于减小晶粒尺寸和降低粉体的热导率。采用相同工艺参数可制备出纯NdMgAl11O19粉体,其晶粒尺寸略大于LaMgAl11O19粉体的尺寸。

关键词 无机非金属材料磁铅石相镁基六铝酸镧沉淀温度沉淀pH值晶粒尺寸    
Abstract

Powders of LaMgAl11O19 (lanthanum magnesium hexaaluminate) were synthesized via a two-step process, i.e. chemical co-deposition for precursor powders and then high-temperature calcination for final products. The quality of the precursor powders could be improved significantly by proper adjusting the co-deposition parameters such as increasing the deposition temperature and pH value. The formation temperature of magnetoplumbite-phase, the crystallinity and grain size of the prepared powders were characterized by differential thermal analysis and X-ray diffraction. The morphology of powders calcined at 1500℃ for 5 hours for various precursors was examined by scanning electron microscope, while their grain size distribution was inspected by Malvern ZEN3600 and Manual measurement. The feasibility of preparation of various magnesium hexaaluminate was tried by replacing La2O3 with Nd2O3, Gd2O3 or Sm2O3 respectively. The results show that the precursor powders, co-deposited from solution with pH=11.5 at 60℃, could be transformed into powders of plain LaMgAl11O19-phase after calcination at 1440℃, which was 150℃ lower than those co-deposited at room temperature. The powders calcined at 1500℃ for 5 hours were nano-sized, while rising the deposition temperature and pH value may be beneficial to decrease the grain size, therewith decrease the thermal conductivity of powders. Besides the grain size of NdMgAl11O19 powders prepared with the same process parameters was slightly larger than that of LaMgAl11O19 powders.

Key wordsinorganic non-metallic materials    magnetoplumbite phase    lanthanum magnesium hexaluminate    precipitation temperature    precipitation pH    grain size
收稿日期: 2018-09-28     
ZTFLH:  TG174.442  
基金资助:国家自然科学基金(51301180)
作者简介: 李 滢,女,1988年生,博士生
pH valuePrecipitantPrecipition temperature
Precursor powder 112.5AmmoniaRoom temperature
Precursor powder 210.5Ammonia60℃
Precursor powder 311.5Ammonia60℃
Precursor powder 412.5Ammonia60℃
Precursor powder 58.0Ammonium carbonate60℃
Precursor powder 69.5Ammonium carbonate60℃
表1  共沉淀法各前驱粉体工艺参数
图1  不同温度下煅烧前驱粉体的XRD谱
图2  粉体3的DSC及TG曲线
Temperature/℃Precursor powder 1Precursor powder 2Precursor powder 3Precursor powder 5Precursor powder 6
900-46.83%---
100055.55%52.97%63.84%31.01%48.57%
110060.83%77.19%89.88%55.92%90.25%
120095.31%94.36%83.80%86.84%87.52%
130076.51%69.87%76.55%83.60%86.56%
140078.11%71.34%71.13%78.66%77.85%
150079.70%75.68%89.74%83.81%85.08%
表2  共沉淀法制备的各前驱粉体的结晶度
1000℃1100℃1200℃1300℃1400℃1500℃
Precursor powder 125.221.339.432.7104.381.1
Precursor powder 2-17.923.930.437.0676.4
Precursor powder 310.116.120.723.247.255.9
Precursor powder 59.514.051.622.045.072.5
Precursor powder 6-16.120.624.433.960.8
表3  共沉淀法制备的各前驱粉体平均晶粒尺寸
图3  在1500℃煅烧粉体的SEM形貌
图4  在1500℃煅烧5 h各粉体的尺寸分布
图5  在1500℃煅烧5 h各粉体的等径圆尺寸分布
pH valueRare earth elementPrecipitant
Precursor powder 7Nd2O3
Precursor powder 811.5Gd2O3Ammonia
Precursor powder 9Sm2O3
表4  各稀土氧化物掺杂的前驱粉体共沉淀制备工艺
图6  前驱粉体在不同温度煅烧后的XRD谱
图7  在1500℃煅烧的粉体7的SEM形貌及等径圆尺寸分布
[1] Zhou Y C, Liu Q X, Yang L, et al. Failure mechanisms and life prediction of thermal barrier coatings [J]. Chin. J. Solid Mech., 2010, 31: 504
[1] (周益春, 刘奇星, 杨 丽等. 热障涂层的破坏机理与寿命预测 [J]. 固体力学学报, 2010, 31: 504)
[2] He B, Li Y, Zhang H Y, et al. Phase transformation of ZrO2 doped with CeO2 [J]. Rare Met., 2018, 37: 66
[3] Liu Z G, Ouyang J H, Xia X L, et al. Progress in research of novel rare-earth Zirconate materials [J]. Mater. China, 2011, 30(1): 32
[3] (刘占国, 欧阳家虎, 夏校良等. 新型稀土锆酸盐材料研究进展 [J]. 中国材料进展, 2011, 30(1): 32)
[4] Mao Y N, GongA J, Qiu L N, et al. Preparation of Sm2O3 doped La2Ce2O7 ceramics for thermal barrier coatings by high temperature solid-state reaction [J]. Chin. J. Eng., 2015, 37: 86
[4] (毛亚南, 弓爱君, 邱丽娜等. 高温固相法制备Sm2O3掺杂La2Ce2O7热障涂层材料 [J]. 工程科学学报, 2015, 37: 86)
[5] Zhang H S, Zhu T, Wei Y. Research progress of perovskite and A2B2O7 ceramics for thermal barrier coatings [J]. Chin. Rare Earths, 2010, 31(4): 75
[5] (张红松, 朱 涛, 魏 媛. 钙钛矿及A2B2O7型热障涂层用陶瓷材料研究进展 [J]. 稀土, 2010, 31(4): 75)
[6] Ma W, Song F Y, Dong H Y, et al. Thermophysical properties of Y2O3 and Gd2O3 co-doped SrZrO3 thermal barrier coating material [J]. J. Inorg. Mater., 2012, 27: 209
[6] (马 文, 宋峰雨, 董红英等. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能 [J]. 无机材料学报, 2012, 27: 209)
[7] Wu H D, Zhang J H, Zhou Z H, et al. Synthesis and lattice thermal expansion of magnetoplumbite structured Neodymium Magnesium Hexaaluminate [J]. J. Chin. Ceram. Soc., 2017, 45: 930
[7] (吴红丹, 张锦化, 周志辉等. 磁铅石结构NdMgAl11O19粉体的合成与晶格热膨胀 [J]. 硅酸盐学报, 2017, 45: 930)
[8] Machida M, Eguchi K, Arai H. Analytical electron microscope analysis of the formation of BaO?6Al2O3 [J]. J. Am. Ceram. Soc., 1988, 71: 1142
[9] Zhai Y Q, Li Y D, Meng M. Catalytic Combustion over hexaaluminate catalysts [J]. Chin. Rare Earths, 2004, 25(5): 58
[9] (翟彦青, 李永丹, 孟 明. 高温燃烧催化剂-六铝酸盐的结构、性质及制备 [J]. 稀土, 2004, 25(5): 58)
[10] Tian Y L, Qi F, Xie F, et al. Investigation progress on one novel thermal barrier coating [J]. Nonferrous Met. (Extract. Metall.), 2006, 32(suppl.): 41
[10] (田玉亮, 齐 峰, 解 峰等. 一种新型热障涂层的研究进展 [J]. 有色金属(冶金部分), 2006, 32(增刊):41)
[11] Qi F, Fan Z S, Sun D B, et al. Preparation of LaMgAl11O19 spray powder-a new thermal barrier coatings material [J]. J. Mater. Eng., 2006, (7): 14
[11] (齐 峰, 樊自拴, 孙冬柏等. 新型热障涂层材料镁基六铝酸镧喷涂粉末的制备 [J]. 材料工程, 2006, (7): 14)
[12] Ren Q, Wu X L, Wu J P. Application of determination of crystallinity of inorganic materials by XRD [J]. Ceram. Sci. Art, 2003, (3): 18
[12] (任 强, 武秀兰, 吴建鹏. XRD在无机材料结晶度测定中的应用 [J]. 陶瓷科学与艺术, 2003, (3): 18)
[13] Friedrich C, Gadow R, Schirmer T. Lanthanum hexaaluminate-a new material for atmospheric plasma spraying of advanced thermal barrier coatings [J]. J. Therm. Spray Technol., 2001, 10: 592
[14] Yu B L, Qi Q, Tang X F, et al. Effect of grain size on thermoelectric properties of CoSb3 compound [J]. Acta Phys. Sin., 2005, 54: 5763
[14] (余柏林, 祁 琼, 唐新峰等. 晶粒尺寸对CoSb3化合物热电性能的影响 [J]. 物理学报, 2005, 54: 5763)
[15] Gadow R, Lischka M. Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development [J]. Sur. Coat. Technol., 2002, 151-152: 392
[16] Chen X L, Zhang Y F, Xu Z H, et al. Plasma-sprayed rare earth hexaluminate coatings [J]. Therm. Spray Technol., 2009, 1(2): 43
[16] (陈小龙, 张彦飞, 许振华等. 等离子喷涂稀土六铝酸盐热障涂层 [J]. 热喷涂技术, 2009, 1(2): 43)
[17] Bu H Y, Lu C. Research and development of cold spray technology [J]. J. Mater. Eng., 2010, (1): 94
[17] (卜恒勇, 卢 晨. 冷喷涂技术的研究现状及进展 [J]. 材料工程, 2010, (1): 94)
[18] Mallamaci M P, Sartain K B, Carter C B. Crystallization of calcium hexaluminate on basal alumina [J]. Philos. Mag., 1998, 77A: 561
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 宁博, 李志超, 武会宾, 张丙军, 黄曼丽, 丁超. 改善09MnNi容器钢低温冲击韧性的机理[J]. 材料研究学报, 2022, 36(9): 660-666.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.