Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 271-276    DOI: 10.11901/1005.3093.2018.519
  本期目录 | 过刊浏览 |
纳米立方LiF的液相制备及表征
王烈林1(),曾阳1,谢华1,邓司浩1,李兴萍1,易发成1,蒋树庆2,周银行2
1. 西南科技大学 核废物与环境安全国防重点学科实验室 绵阳 621010
2. 中国工程物理研究院 核物理与化学研究所 绵阳 621900
Liquid Synthesis and Characterization of Nanosized Cubic Lithium Fluoride Particles
Lielin WANG1(),Yang ZENG1,Hua XIE1,Sihao DENG1,Xingping LI1,Facheng YI1,Shuqing JIANG2,Yinhang ZHOU2
1. Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
引用本文:

王烈林,曾阳,谢华,邓司浩,李兴萍,易发成,蒋树庆,周银行. 纳米立方LiF的液相制备及表征[J]. 材料研究学报, 2019, 33(4): 271-276.
Lielin WANG, Yang ZENG, Hua XIE, Sihao DENG, Xingping LI, Facheng YI, Shuqing JIANG, Yinhang ZHOU. Liquid Synthesis and Characterization of Nanosized Cubic Lithium Fluoride Particles[J]. Chinese Journal of Materials Research, 2019, 33(4): 271-276.

全文: PDF(4352 KB)   HTML
摘要: 

以NH4F和LiOH·H2O为原料、无水乙醇为溶剂和结晶控制剂,采用液相法合成前驱体低温烧结制备纳米级LiF粉末。利用X射线粉末衍射、扫描电镜、透射电镜和激光粒度仪等分析手段对样品进行表征。结果表明,前驱体的主要成分为LiF、NH4F和LiOH·H2O;热分析结果表明,NH4F的分解温度约为190℃。在220~400℃烧结后得到的样品具有单一的LiF立方晶体结构,颗粒饱满,大小均匀,形貌良好,粒径的平均尺寸为80 nm。

关键词 无机非金属材料纳米LiF液相制备立方晶体结构    
Abstract

The nanosized particles of LiF were successfully prepared via liquid synthesis method with ammonium fluoride and lithium hydroxide as raw materials, anhydrous ethanol as solvent and crystallization-controlling agent. The structure and morphology of LiF particles were characterized by means of XRD, SEM, TEM and particle size analyzer. The precursor mainly composes of LiF, NH4F and LiOH·H2O. The thermal analysis of the precursor indicates that the decomposition temperature of ammonium fluoride is about 190°C. Nano-powders of LiF has a single cubic crystallographic structure after calcinations at 220~400℃. The nano-LiF particles with average size of about 80nm are full in crystallinity, uniform in size and good in shape.

Key wordsinorganic non-metallic materials    nanometer lithium fluoride    liquid synthesis method    cubic crystal structure
收稿日期: 2018-08-23     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(21101129);核能开发专项(90509160001);四川省科技厅应用基础研究(2018JY0449);四川省教育厅重大培育项目(17CZ0037)
作者简介: 王烈林,男,1982年生,副研究员
图1  LiF前驱体X射线衍射图谱
图2  前驱体的SEM图片
图3  LiF前驱体的TG/DTA曲线
图4  不同烧结温度的LiF样品的XRD谱
图5  烧结温度不同的LiF样品的显微组织结构
图6  LiF粉末样品的SEM照片及粒径分布
Calcination conditionCrystal size/nm
150℃+220℃/6 h60.7
150℃+300℃/6 h65.4
150℃+400℃/6 h58.5
表1  不同烧结温度的产物晶粒尺寸
图7  LiF样品的EDS元素分析图
ElementsMass fraction/%Atomic fraction/%
C K1.373.26
O K1.572.81
F K61.4792.61
Al K0.600.64
Si K0.560.57
K K0.150.11
Totals65.73100
表2  LiF粉末EDS元素分析结果
图8  LiF粉体的TEM图和SAED图
[1] ZhouL J, LeZ Q. Inorganic Salt Industry Manual [M]. 2nd ed. Beijing: Chemical Industry Press, 1996
[1] (周连江, 乐志强. 无机盐工业手册 [M]. 2版. 北京: 化学工业出版社, 1996)
[2] ShuW F, GaoY, DengZ H, et al. Preparation method of ultra-pure and highly active battery grade lithium fluoride [J]. Mod. Chem. Ind., 2017, 37(2): 141
[2] (舒伟锋, 高 月, 邓支华等. 超纯高活性电池级氟化锂的制备方法 [J]. 现代化工, 2017, 37(2): 141)
[3] JiangC Y. Growth of LiF crystal [J]. J. Synthetic Cryst., 1979, (4): 1
[3] (蒋崇义. 氟化锂晶体生长 [J]. 人工晶体学报, 1979, (4): 1)
[4] KongB G, ChenR F. The research of growing large size LiF single crystal by the czockralski method [J]. Opt. Instrum., 1995, 17(3): 12
[4] (孔宝国, 陈瑞芳. 提拉法生长大尺寸氟化锂单晶体的研究 [J]. 光学仪器, 1995, 17(3): 12)
[5] JiS G, LiY H. Preparation of optical crystal used in vacuum ultraviolet band [J]. J. Synthetic Cryst., 2000, 29(S1): 108
[5] (纪慎功, 李艳红. 真空紫外波段光学晶体材料的研制 [J]. 人工晶体学报, 2000, 29(S1): 108)
[6] FanZ D, WangQ T, YinL J, et al. Research progress of LiF crystal [J]. Bull. Chin. Ceram. Soc., 2010, 29: 893
[6] (范志达, 王强涛, 尹利君等. 氟化锂晶体的研究进展 [J]. 硅酸盐通报, 2010, 29: 893)
[7] XuW, WuX Y. Application of fluoride lithium crystal dosimeter in NPP environmental dose monitoring in China [J]. Radiat. Prot. Bull., 2016, 36(3): 10
[7] (徐 伟, 乌晓燕. 氟化锂晶体剂量计用于我国核电站环境热点剂量监测 [J]. 辐射防护通讯, 2016, 36(3): 10)
[8] KnollG F. Radiation detection and measurement [J]. Proceedings of the IEEE, 2010, 69: 495
[9] FranceschiniF, RuddyF H. Properties and applications of silicon carbide: silicon carbide neutron detectors [M]. Rijeka: InTech Europe, 2011
[10] ZhangJ, WangY P, GuoY, et al. Determination of measuring and annealing methods for LiF(Mg, Cu, P) thermoluminescence detectors [J]. Radiat Prot, 2003, 23(2): 122
[10] (张 建, 王亚平, 郭 勇等. LiF(Mg, Cu, P)热释光探测器测量、退火方式的确定. 辐射防护, 2003, 23(2): 122)
[11] LiuH X. Lithium fluoride research progress of production [J]. Light Met., 2011, (3): 11
[11] (刘海霞. 氟化锂生产工艺研究进展 [J]. 轻金属, 2011, (3): 11)
[12] LiuM G, WangM H, TangS K. Preparation and analysis of high-purity lithium fluoride [J]. Chin. Nucl. Sci. Tech. Rep., 1999: 381
[12] (刘妙根, 王茂涵, 唐书凯. 高纯氟化锂的制备与分析 [J]. 中国核科技报告, 1999: 381)
[13] GoodenoughR D, JonesG D, AndersonR E. Recovery of lithium from lithiumbearing ores [P]. USA, 3295920, 1963
[14] GoodenoughR D. Lithium fluoride production [P]. USA, US3179495, 1965
[15] LiS Y, TengX G, ShaS P, et al. Review of preparation and analysis of high-purity LiF [J]. Ind. Miner. Process., 2006, 35(3): 34
[15] (李世友, 滕祥国, 沙顺萍等. 高纯氟化锂的制备与分析方法评述 [J]. 化工矿物与加工, 2006, 35(3): 34)
[16] YuJ K. Progress in synthesis of high purity lithium fluoride [J]. Inorg. Chem. Ind., 2011, 43(5): 15
[16] (于剑昆. 高纯氟化锂的合成工艺进展 [J]. 无机盐工业, 2011, 43(5): 15)
[17] HuQ Y, LiX H, WangZ X, et al. Process for producing high purity nano-lithium fluoride [P]. Chin Pat, 101195495, 2008
[17] (胡启阳, 李新海, 王志兴等. 高纯纳米氟化锂的制备方法 [P]. 中国专利, 101195495, 2008)
[18] LuoC L, GongY, HanM. Formation of nanometer-sized LIF microclters and their properties of fractal aggregation [J]. J. Nanjing Univ . (Nat. Sci.), 1994, 17(3): 19
[18] (罗成林, 龚艳春, 韩 民. LiF纳米微簇的制备及其分形凝聚特征 [J]. 南京大学学报(自然科学版), 1994, 17(3): 19)
[19] BellingerS L. Advanced microstructured semiconductor neutron detectors: design, fabrication, and performance [D]. Manhattan: Kansas State University, 2011
[20] GuanR B. Practical Handbook of Chemical Reagent Standards: Inorganic Reagent Fascicle [M]. Beijing: Standards Press of China, 2011
[20] (关瑞宝. 化学试剂标准实用手册: 无机试剂分册 [M]. 北京: 中国标准出版社, 2011)
[21] LangfordJ I, WilsonA J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size [J]. J. Appl. Crystallogr., 1978, 11: 102
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.