Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (1): 59-64    DOI: 10.11901/1005.3093.2017.798
  研究论文 本期目录 | 过刊浏览 |
石墨烯改性润滑油的悬浮分散特性和摩擦学性能
佟钰1,李宛鸿1,董嘉1,宋学君1,王函2,3,曾尤2,3()
1. 沈阳建筑大学材料科学与工程学院 沈阳 110168
2. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3. 中国科学技术大学材料科学与工程学院 沈阳 110016
Suspension Dispersibility and Tribological Properties of Graphene-modified Lubricant Oil
Yu TONG1,Wanhong LI1,Jia DONG1,Xuejun SONG1,Han WANG2,3,You ZENG2,3()
1. School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

佟钰,李宛鸿,董嘉,宋学君,王函,曾尤. 石墨烯改性润滑油的悬浮分散特性和摩擦学性能[J]. 材料研究学报, 2019, 33(1): 59-64.
Yu TONG, Wanhong LI, Jia DONG, Xuejun SONG, Han WANG, You ZENG. Suspension Dispersibility and Tribological Properties of Graphene-modified Lubricant Oil[J]. Chinese Journal of Materials Research, 2019, 33(1): 59-64.

全文: PDF(2921 KB)   HTML
摘要: 

用分光光度法定量评定润滑油中石墨烯的浓度,根据石墨烯的浓度(0.0125~0.075 mg/mL)与润滑油吸光度之间的正相关特性考察了石墨烯的初始浓度、超声处理时间以及表面活性剂掺量等因素对石墨烯改性润滑油悬浮分散特性的影响和最佳工艺参数范围,并将优化出的分散性良好、长期稳定悬浮的石墨烯改性润滑油用于摩擦学性能测试。结果表明,适当的超声分散和表面改性可提高石墨烯改性润滑油的分散悬浮效果。石墨烯浓度为0.025 mg/mL时石墨烯改性润滑油的摩擦系数降低74.78%,磨斑尺寸减小了28.33%。

关键词 无机非金属材料石墨烯改性悬浮分散摩擦磨损    
Abstract

The concentration of graphene in lubricant oil was measured by means of spectrophotometric method, in terms of an apparent linear relationship between the absorbance and the graphene concentration (0.0125~0.100 mg/mL) of lubricant oils. By making use of such linear relationship, the effect of the initial concentration of graphene, ultrasonic treatment time and surfactant content on the suspensibility and dispersibility of the graphene-modified lubricant oil were assessed, and thereby, the preparation processing was optimized. The as-prepared graphene-modified lubricant oil showed typically outstanding suspension dispersibility for long-term, which should be attributed to the optimization of ultrasonic time and surfactant concentration. The graphene-modified lubricant oil also presented excellent performance in friction reduction and wear resistance, namely the friction coefficient was found to decrease by 74.78% for the lubricant oil intermingled with 0.025 mg/mL graphene in comparison with the blank oil, correspondingly the wear scar diameter reduced by 28.33%.

Key wordsinorganic non-metallic materials    graphene    surface modification    suspensibility and dispersibility    friction and wear
收稿日期: 2018-01-11     
ZTFLH:  TH117  
基金资助:辽宁省高等学校基本科研项目(LJZ2017016);沈阳材料科学国家实验室项目(2017RP10);沈阳市科技局项目(17-231-1-66)
作者简介: 佟钰,男,1972年生,副教授
图1  GNS石墨烯的微观结构表征
图2  石墨烯改性润滑油的紫外-可见光吸收光谱和吸光度-浓度关系
图3  超声处理对石墨烯-润滑油分散体系吸光度的影响
图4  十二烷基苯磺酸钠SDBS用量对石墨烯改性润滑油吸光度的影响
Concentration of GNS/mg·mL-100.01250.0250.0500.0750.100
Concentration of SDBS/mg·mL-10.30.50.60.80.9
Ultrasonic time/h2.52.53.03.54.0
表1  在不同浓度条件下GNS石墨烯改性润滑油的推荐分散工艺参数
图5  石墨烯掺量对改性润滑油摩擦性能的影响
图6  0.025 mg/mL浓度GNS石墨烯引入对磨斑表面形貌的影响
1 RaoC N R, BiswasK, SubrahmanyamK S, et al. Graphene, the new nanocarbon [J].J. Mater. Chem., 2009, 19(17): 2457
2 LiuP, YanC X, LingZ C, et al. Technological routes toward homogeneous dispersion of graphene: A review [J]. Mater. Rev., 2016, 30(10): 39
2 刘朋, 闫翠霞, 凌自成等. 石墨烯均匀分散问题研究进展 [J]. 材料导报, 2016, 30(10): 39)
3 JohnsonD W, DobsonB P, ColemanK S. A manufacturing perspective on graphene dispersions [J]. Curr. Opin. Colloid Interface Sci., 2015, 20(5-6): 367
4 SenatoreA, AgostinoV D, PetroneV, et al. Graphene oxide nano-sheets as effective friction modifier for oil lubricant: materials, methods and tribological results [J]. Isrn Tribol., 2013, (1): 1395
5 LinJ S, WangL W, ChenG H. Modification of graphene platelets and their tribological properties as a lubricant additive [J]. Tribol. Lett., 2011, 41(1): 209
6 ZhangW, ZhouM, ZhuH W, et al. Tribological properties of oleic acid-modified graphene as lubricant oil additives [J]. J.Phys. D: Appl. Phys., 2011, 44(20): 205303
7 ShenX P, JiangL, JiZ Y, et al. Zhu. Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant [J]. J. colloid interface Sci., 2011, 354(2): 493
8 ChoudharyS, MungseH P, KhatriO P. Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications [J].J. Mater. Chem., 2012, 22(39): 21032
9 ZhaoL, CaiZ B, ZhangZ C, et al. Triboligical properties of graphene as effective lubricant additive in oil on textured bronze surface [J]. Chin.J. Mater. Res., 2016, 30(1): 57
9 赵磊, 蔡振兵, 张祖川等. 石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为 [J]. 材料研究学报, 2016, 30(1): 57)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[9] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[10] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[11] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[12] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[14] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.