|
|
石墨烯调控3D打印功能钛的组织和性能 |
王春锦, 陈文革( ), 亢宁宁, 杨涛 |
西安理工大学材料科学与工程学院 西安 710048 |
|
Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing |
WANG Chunjin, CHEN Wenge( ), KANG Ningning, YANG Tao |
Xi'an University of Technology, School of Material Science and Engineering, Xi'an 710048, China |
引用本文:
王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
Chunjin WANG,
Wenge CHEN,
Ningning KANG,
Tao YANG.
Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing[J]. Chinese Journal of Materials Research, 2023, 37(10): 791-800.
1 |
He X, Wang X F, Wang X L, et al. Research progress in the preparation process of porous titanium materials [J]. Light Ind. Sci. Technol., 2020, 36(9): 69
|
1 |
何 喜, 王晓峰, 王小炼 等. 多孔钛材料制备工艺研究进展 [J]. 轻工科技, 2020, 36(9): 69
|
2 |
Singla A K, Banerjee M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process 2021, 64: 161
|
3 |
Ats A, Ytb C, Pbp C, et al. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 254
doi: 10.1016/j.ijrmhm.2018.10.004
|
4 |
Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
|
5 |
Zhang M L, Chi X T, Zhou C S, et al. Preparation and properties of porous Ti-Nb alloy materials [J]. Kang T'ieh Fan T'ai, 2021, 42(6): 84
|
5 |
张美丽, 叱小彤, 周春生 等. 多孔Ti-Nb合金材料的制备与性能研究 [J]. 钢铁钒钛, 2021, 42(6): 84
|
6 |
Chen M, Zhang E, Lan Z. Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys [J]. Mater. Sci. Eng., C, 2016, 62: 350
|
7 |
Chandra Y, Adhikaris S, Saaavedra F E I, et al. Advances in finite element modelling of graphene and associated nanostructures [J]. Mater. Sci. Eng.: R: Reports, 2020, 140: 100544
doi: 10.1016/j.mser.2020.100544
|
8 |
Hong J J, He X L, Fu C X, et al. Research progress of graphene reinforced composites [J]. Chem. Propellants Polym. Mater., 2020, 18(6): 11
|
8 |
洪机剑, 何小玲, 傅楚娴 等. 石墨烯增强复合材料研究进展 [J]. 化学推进剂与高分子材料, 2020, 18(6): 11
|
9 |
Luo J M, Wu X H, Zang J P, et al. Preparation and mechanical properties of GNPs-Cu/Ti6Al4V composites[J]. Chin. J. of Nonferrous Met., 2017, 27(9): 1803
|
9 |
罗军明, 吴小红, 张剑平 等. 石墨烯-Cu/Ti6Al4V复合材料的制备及力学性能 [J]. 中国有色金属学报, 2017, 27(9): 1803
|
10 |
Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium martix nanocomposite [J]. China Surf. Eng., 2015, 28(06): 127
|
10 |
胡增荣, 童国权, 张 超 等. 激光烧结石墨烯钛纳米复合材料及其耐腐蚀性能 [J]. 中国表面工程, 2015, 28(6): 127
|
11 |
Mu X N, Cai H N, Zhang H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite [J]. Mater. Des., 2017, 140: 431
doi: 10.1016/j.matdes.2017.12.016
|
12 |
Yan Q, ChenN B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting [J]. Carbon, 2020, 174(12): 451
doi: 10.1016/j.carbon.2020.12.047
|
13 |
Lin K, Fang Y, Gu D, et al. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability [J]. Adv. Powder Technol., 2021, 32(5): 426
|
14 |
Chen H, Mi G B, Li P J, et al. Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy [J]. J. Mater. Eng., 2019, 47(9): 8
|
14 |
陈 航, 弭光宝, 李培杰 等. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响 [J]. 材料工程, 2019, 47(9): 8
|
15 |
Jiang H, Ler J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling [J]. J. Plast. Eng., 2016, 23(6): 187
|
15 |
江鸿, 雷君相, 谢超英. 轧制变形超细晶纯钛的电化学腐蚀行为 [J]. 塑性工程学报, 2016, 23(6): 187
|
16 |
Sun L F, Yang Y Q, Yang Z. Study on surface roughness of selective laser meiting Ti6Al4V based on power characteristics [J]. Chin. J. Lasers, 2016, 43(7): 104
|
16 |
孙健峰, 杨永强, 杨洲. 基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究 [J]. 中国激光, 2016, 43(7): 104
|
17 |
Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices [J]. Acta Phys. Sin., 2017, 66(21): 177
|
17 |
杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件 [J]. 物理学报, 2017, 66(21): 177
|
18 |
Wu Y L, Wang Y, Qiao L Y, et al. Study on structures and properties of hexagonal porous Ti6Al4V ally via selective laser melting [J]. J. Funct. Mater., 2018, 49(6): 6080
|
18 |
吴艳琳, 王勇, 乔丽英, 姜定成. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究 [J]. 功能材料, 2018, 49(6): 6080
doi: 10.3969/j.issn.1001-9731.2018.06.012
|
19 |
Chou X M. Study on powder metallurgy titanium alloy and porous titanium [D]. Changsha: Central South University, 2007
|
19 |
丑晓明. 粉末冶金钛合金及多孔钛研究 [D]; 长沙: 中南大学, 2007
|
20 |
Li H L, Jia D C, Yang Z H, et al. Research progress on selective laser melting 3D printing of titanium alloys and titanium matrix composites [J]. Mater. Sci. Technol., 2019, 27(2): 1
doi: 10.1179/026708311X12911114483692
|
20 |
李海亮, 贾德昌, 杨治华 等. 选区激光熔化3D打印钛合金及其复合材料研究进展 [J]. 材料科学与工艺, 2019, 27(2): 1
|
21 |
Sun F, Wang K X, Yang H, et al. Investigation of graphene reinforced titanium matrix composites preparation process and properties [J]. Titanium Ind. Prog., 2019, 36(1): 8
|
21 |
孙 峰, 王凯旋, 杨辉 等. 石墨烯增强钛基复合材料制备工艺与性能研究 [J]. 钛工业进展, 2019, 36(1): 8
|
22 |
Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium matrix nanocomposites [J]. China Surf. Eng., 2015, 28(6): 127
|
23 |
Li H, Huang B, Fan S, et al. Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting [J]. Rare Met. Mater. Eng., 2013, 42(2): 209
|
24 |
Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing [J]. Int. J. Precis. Eng. Man., 2014, 15(6): 1235
doi: 10.1007/s12541-014-0462-2
|
25 |
Singla A K, Baner J M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process, 2021, 64: 161
doi: 10.1016/j.jmapro.2021.01.009
|
26 |
Bayode B L, Tefeo M L, Tayler T, et al. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]. Mater. Sci. Eng., B, 2022, 283: 115826
|
27 |
Zhang F, Liu S, Zhao P, et al. Titanium/nanodiamond nanocomposites: Effect of nanodiamond on microstructure and mechanical properties of titanium [J]. Mater. Des., 2017, 131: 144
doi: 10.1016/j.matdes.2017.06.015
|
28 |
Bai H Q, Shang Z, Cai X L, et al. Research progress of in-situ titanium carbide particulate reinforced titanium composite material [J]. Hot Working Technol., 2019, 48(4): 1
|
28 |
白海强, 商 昭, 蔡小龙 等. 原位制备碳化钛颗粒增强钛基复合材料研究进展 [J]. 热加工工艺, 2019, 48(4): 1
|
29 |
Wang X J, Wang X C, Xi B Y I, et al. Impact of powder characteristics on formation properties of selective laser melted Al-Si alloy [J]. Shandong Sci., 2016, 29(2):30
doi: 10.3976/j.issn.1002-4026.2016.02.007
|
29 |
王小军, 王修春, 伊希斌 等. 粉体特征对选区激光熔化Al-Si合金成型性能的影响 [J]. 山东科学, 2016, 29(2):30
|
30 |
Zong X W, Zhang J, Lu B H, et al. Numerical analysis and microstructure and properties of Hastelloy X and Ti6Al4V alloy formed by selective laser melting [J]. Appl. Laser, 2021, 41(4): 745
|
30 |
宗学文, 张 健, 卢秉恒 等. 选区激光熔化制备Hastelloy X和Ti6Al4V合金数值分析及组织性能 [J]. 应用激光, 2021, 41(4): 745
|
31 |
Gu D, Meng G, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67(2): 185
doi: 10.1016/j.scriptamat.2012.04.013
|
32 |
Ph A, Zz A, Wd B, et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting [J]. Composites, Part B, 2021, 225: 109305
|
33 |
Chen S Y, Huang J C, Pan C T, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting [J]. J. Alloys Compd., 2017, 713: 248
doi: 10.1016/j.jallcom.2017.04.190
|
34 |
Ji X M, Xiang S, Shen T, et al. Relation Between Solution Aging Parameters and Microstructure and Properties of TA12 Ti Alloy [J]. Hot Working Technol., 2015, 44(20): 172
|
34 |
冀宣名, 向 嵩, 沈 涛 等. TA12钛合金固溶时效参数与组织和性能的关系 [J]. 热加工工艺, 2015, 44(20): 172
|
35 |
Wang W, Zhou H X, Wang Q J. Tribological properties of graphene reinforced titanium matrix composites [J]. Ordnance Mater. Sci. Eng., 2019, 42(1): 26
|
35 |
王 伟, 周海雄, 王庆娟 等. 石墨烯增强钛基复合材料的摩擦学性能研究 [J]. 兵器材料科学与工程, 2019, 42(1): 26
|
36 |
Su S L, Rao Q H, He Y H. Compression mechanical properties of FeAl intermetallic compound porous material [J]. Rare Met. Mater. Eng., 2018, 47(08): 2453
|
37 |
Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting [J]. Mater. Sci. Eng. A Struct. Mater., 2016, 670: 264
doi: 10.1016/j.msea.2016.06.013
|
38 |
Jia P, Xu X T, Huang F, et al. Effect of pore structure on mechanical properties and fracture mechanism of porous materials [J].J. Northeast.Univ., Nat. Sci., 2021, 42(12): 1768
|
38 |
贾 蓬, 徐雪桐, 黄菲 等. 多孔材料的孔结构对其力学性能及破裂机制的影响 [J]. 东北大学学报(自然科学版), 2021, 42(12): 1768
|
39 |
Qiao J C, Xi Z P, Tang H P, et al. Review on compressive behavior of porous metals [J]. Rare Met. Mater. Eng., 2010, 39(3): 561
|
39 |
乔吉超, 奚正平, 汤慧萍 等. 金属多孔材料压缩行为的评述 [J]. 稀有金属材料与工程, 2010, 39(3): 561
|
40 |
GAO R N, Xiong Y Z, Zhang H, et al. Mechanical properties and biocompatibilities of radially graded porous titanium/tantalum fabricated by selective laser melting [J]. Rare Met. Mater. Eng., 2021, 50(1): 249
|
40 |
高芮宁, 熊胤泽, 张 航 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性 [J]. 稀有金属材料与工程, 2021, 50(1): 249
|
41 |
Wu L, Fu T T, Yu X H, et al. Anodic oxidation characteristic of commercial pure titanium and its corrosion resistance [J]. Hot Working Technol., 2017, 46(4): 161
|
41 |
伍 俐, 付天琳, 于晓华 等. 工业纯钛的阳极氧化特性及其抗腐蚀性能研究 [J]. 热加工工艺, 2017, 46(4): 161
|
42 |
Li Y S. Study of antiseptic properties and biocompatibility of metallic biological [J]. Chin. J. Pharm. Anal., 2006, 26(7): 1028
|
42 |
李云胜. 金属生物材料的抗腐蚀性能和生物相容性研究 [J]. 药物分析杂志, 2006, 26(7): 1028
|
43 |
Zou T C, Ou Y, Zhu H. Effect of heat treatment on microhardness of AlSi7Mg alloy fabricated by selective laser melting [J]. Hot Working Technol., 2019, 48(24): 123
|
43 |
邹田春, 欧 尧, 祝 贺. 热处理对激光选区熔化AlSi7Mg合金显微硬度的影响 [J]. 热加工工艺, 2019, 48(24): 123
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|