Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (1): 65-71    DOI: 10.11901/1005.3093.2017.793
  研究论文 本期目录 | 过刊浏览 |
MoP纳米粒子锂离子电池负极材料的制备及其电化学性能
肖雅丹,靳晓哲,黄昊(),吴爱民,高嵩,刘佳
大连理工大学材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024
Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries
Yadan XIAO,Xiaozhe JIN,Hao HUANG(),Aimin WU,Song GAO,Jia LIU
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

肖雅丹,靳晓哲,黄昊,吴爱民,高嵩,刘佳. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能[J]. 材料研究学报, 2019, 33(1): 65-71.
Yadan XIAO, Xiaozhe JIN, Hao HUANG, Aimin WU, Song GAO, Jia LIU. Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries[J]. Chinese Journal of Materials Research, 2019, 33(1): 65-71.

全文: PDF(5645 KB)   HTML
摘要: 

用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。

关键词 无机非金属材料磷化钼直流电弧法电化学性能锂离子电池负极材料    
Abstract

Molybdenum phosphide (MoP) is successfully prepared by a facile 2-step process. First as precursor, nano metal Mo-powders were prepared via DC arc plasma method, which then react with red phosphorus through solid-phase reaction to yield MoP nanoparticles. The prepared MoP nanoparticles were further characterized by means of XRD and TEM. Results show that the MoP nanoparticles are spherical with particle diameter of 20-50 nm. As the anode material for lithium-ion batteries, MoP nanoparticles deliver the initial discharge capacity of 746 mAh/g at the current density of 100 mA/g and the capacity maintains at 241.9 mAh/g after 50 charge-discharge cycles. As the current density increased to 2000 mA/g the discharge capacity decreases to 99.90 mAh/g. The constant capacity of 247.60 mAh/g can be restored when the current density is back to 100 mA/g.

Key wordsinorganic non-metallic materials    molybdenum phosphide    nanoparticles    DC arc disch-arge    electrochemical perfor-mance    lithium-ion battery    anode material
收稿日期: 2018-01-19     
ZTFLH:  O646,TM912.9  
基金资助:中央高校基本科研业务费重点实验室专项经费(DUT17ZD101);国家自然科学基金(51171033);常州工业支撑计划(CE20160022)
作者简介: 肖雅丹,女,1995年生,硕士生
图1  MoP的XRD图谱和晶体结构的示意图
图2  在不同放大倍率下Mo和MoP的TEM照片
图3  MoP纳米粒子的循环伏安曲线
图4  MoP纳米粒子负极材料在100 mA/g电流密度条件下的充放电曲线和循环性能,以及在不同电流密度下的倍率性能表征
图5  MoP负极材料EIS对比图和拟合等效电路图
SampleCPE2/F

R2

/Ω·cm2

σw

/Ω·cm2·s-0.5

Do

/cm2·s-1

IF

/mA·cm-2

MoP initial-390.30473.354.17×10-171.07×10-2
3th cycle4.84×10-5119.60196.792.41×10-163.48×10-2
50th cycle1.36×10-521.26168.353.29×10-161.96×10-1
表1  MoP负极材料模拟电路参数
1 AricoA S, BruceP, ScrosatiB, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366
2 ManthriamA, VadivelM A, SarkarA, et al. Nanostructured electrode materials for electrochemical energy storage and conversion [J]. Energy & Environmental Science, 2008, 1(6): 621
3 YangZ, ZhangJ, Kintner-meyerM C W, et al. Electrochemical energy storage for green grid [J]. Chemical Reviews, 2011, 111(5): 3577
4 ChangK, WangZ, HuangG, et al. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode [J]. Journal of Power Sources, 2012, 201: 259
5 ChenS Y, WangZ X, FangX P, et al. Characterization of TiS2 as an anode material for lithium ion batteries [J]. Acta Physico-Chimica Sinica, 2011, 27(1): 97
6 YangJ, ZhouX Y, LiJ, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries [J]. Materials Chemistry & Physics, 2012, 135(2-3): 445
7 JiaoL S, LiuJ Y, LiH Y, et al. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes [J]. Journal of Power Sources, 2016, 315: 9
8 GowdaP, KumarP, TripathiR, et al. Electric field induced ultra-high actuation in a bulk carbon nanotube structure [J]. Carbon, 2014, 67(2): 546
9 ZhangZ, LieberC M. Nanotube structure and electronic properties probed by scanning tunneling microscopy [J]. Applied Physics Letters, 1993, 62(22): 2792
10 WangJ, ZhouY, XiongB, et al. Fast lithium-ion insertion of TiO2, nanotube and graphene composites [J]. Electrochimica Acta, 2013, 88(2): 847
11 SunY, HuX, LuoW, et al. Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries [J]. Journal of Physical Chemistry C, 2012, 116(39): 20794
12 CabanaJ, MonconduitL, LarcherD, et al. Beyond interecalation-based Li-ion batteries:the state of the art and challenges of electrode materials reacting through conversion reactions [J]. Advanced Energy Materials, 2010, 22(35): E170-E192
13 ZhangH, BraunP V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes [J]. Nano Letters, 2012, 12(6): 2778
14 WangJ, DuN, ZhangH, et al. Cu-Si1-xGex, core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries [J]. Journal of Materials Chemistry, 2012, 208(4): 434
15 LiuC J, HuangH, CaoG Z, et al. Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode [J]. Electrochimica Acta, 2014, 144: 376
16 KimH, LeeJ T, LeeD C, et al. Enhancing performance of Li-S cells using a Li-Al alloy anode coating [J]. Electrochemistry Communications, 2013, 36(6): 38
17 YinX, ChenL, LiC, et al. Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties [J]. Electrochimica Acta, 2011, 56(5): 2358
18 SouzaD C, PralongV, JacobsonA J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry [J]. Science, 2002, 296(5575): 2012
19 SunF X, LiC. Advance in the research on hydrodesulfurization and hydrodenitrogenation on transition metal phosphides [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21(6): 1
19 孙福侠, 李 灿. 过渡金属磷化物的加氢精制催化性能研究进展 [J]. 石油学报(石油加工), 2005, 21(6): 1)
20 LuY, TuJ, GuC, et al. In situ, growth and electrochemical characterization versuslithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy [J]. Journal of Materials Chemistry, 2011, 21(44): 17988
21 KimM G, LeeS, ChoJ. Highly reversible li-ion MoP2 nanoparticle cluster anode for lithium rechargeable batteries [J]. Journal of Electrochemical Society, 2009, 156(2): A89-A94
22 TianJ, LiuQ, AsiriA M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 [J]. Journal of the American Chemical Society, 2014, 136(21): 7587
23 ChengR H, ShuY Y, LiL, et al. Synthesis and characterization of high surface area molybdenum phosphide [J]. Applied Catalysis A General, 2007, 316(2): 160
24 LiW J, ChouS L, WangJ Z, et al. Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability [J]. Advanced Materials, 2014, 26(24): 4037
25 LuY, TuJ P, XiongQ Q, et al. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries [J]. Advanced Functional Materials, 2012, 22(18): 3927
26 DoannguyenV V, ZhangS, TriggE B, et al. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. J. Acs Nano, 2015, 9(8): 8108
27 YangD, ZhuJ X, RuiX H, et al. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries [J]. Acs Applied Materials & Interfaces, 2013, 5(3): 1093
28 BaiY J, ZhangH J, LiX, et al. Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage [J]. Nanoscale, 2015, 7(4): 1446
29 WangX, SunP, QinJ, et al. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. J. Nanoscale, 2016, 8: 10330
30 LiuC J, HuangH, CaoG Z, et al. Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode [J]. Electrochimica Acta, 2014, 144: 376
31 GoodenoughJ B, KimY. Challenges for Rechargeable Li Batteries [J]. Chemistry of Materials, 2015, 22(3): 587
32 HuangH, GaoS, WuA M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation [J]. Nano Energy, 2016, 31: 74
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.