|
|
MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 |
肖雅丹,靳晓哲,黄昊( ),吴爱民,高嵩,刘佳 |
大连理工大学材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024 |
|
Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries |
Yadan XIAO,Xiaozhe JIN,Hao HUANG( ),Aimin WU,Song GAO,Jia LIU |
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
肖雅丹,靳晓哲,黄昊,吴爱民,高嵩,刘佳. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能[J]. 材料研究学报, 2019, 33(1): 65-71.
Yadan XIAO,
Xiaozhe JIN,
Hao HUANG,
Aimin WU,
Song GAO,
Jia LIU.
Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries[J]. Chinese Journal of Materials Research, 2019, 33(1): 65-71.
1 | AricoA S, BruceP, ScrosatiB, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366 | 2 | ManthriamA, VadivelM A, SarkarA, et al. Nanostructured electrode materials for electrochemical energy storage and conversion [J]. Energy & Environmental Science, 2008, 1(6): 621 | 3 | YangZ, ZhangJ, Kintner-meyerM C W, et al. Electrochemical energy storage for green grid [J]. Chemical Reviews, 2011, 111(5): 3577 | 4 | ChangK, WangZ, HuangG, et al. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode [J]. Journal of Power Sources, 2012, 201: 259 | 5 | ChenS Y, WangZ X, FangX P, et al. Characterization of TiS2 as an anode material for lithium ion batteries [J]. Acta Physico-Chimica Sinica, 2011, 27(1): 97 | 6 | YangJ, ZhouX Y, LiJ, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries [J]. Materials Chemistry & Physics, 2012, 135(2-3): 445 | 7 | JiaoL S, LiuJ Y, LiH Y, et al. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes [J]. Journal of Power Sources, 2016, 315: 9 | 8 | GowdaP, KumarP, TripathiR, et al. Electric field induced ultra-high actuation in a bulk carbon nanotube structure [J]. Carbon, 2014, 67(2): 546 | 9 | ZhangZ, LieberC M. Nanotube structure and electronic properties probed by scanning tunneling microscopy [J]. Applied Physics Letters, 1993, 62(22): 2792 | 10 | WangJ, ZhouY, XiongB, et al. Fast lithium-ion insertion of TiO2, nanotube and graphene composites [J]. Electrochimica Acta, 2013, 88(2): 847 | 11 | SunY, HuX, LuoW, et al. Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries [J]. Journal of Physical Chemistry C, 2012, 116(39): 20794 | 12 | CabanaJ, MonconduitL, LarcherD, et al. Beyond interecalation-based Li-ion batteries:the state of the art and challenges of electrode materials reacting through conversion reactions [J]. Advanced Energy Materials, 2010, 22(35): E170-E192 | 13 | ZhangH, BraunP V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes [J]. Nano Letters, 2012, 12(6): 2778 | 14 | WangJ, DuN, ZhangH, et al. Cu-Si1-xGex, core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries [J]. Journal of Materials Chemistry, 2012, 208(4): 434 | 15 | LiuC J, HuangH, CaoG Z, et al. Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode [J]. Electrochimica Acta, 2014, 144: 376 | 16 | KimH, LeeJ T, LeeD C, et al. Enhancing performance of Li-S cells using a Li-Al alloy anode coating [J]. Electrochemistry Communications, 2013, 36(6): 38 | 17 | YinX, ChenL, LiC, et al. Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties [J]. Electrochimica Acta, 2011, 56(5): 2358 | 18 | SouzaD C, PralongV, JacobsonA J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry [J]. Science, 2002, 296(5575): 2012 | 19 | SunF X, LiC. Advance in the research on hydrodesulfurization and hydrodenitrogenation on transition metal phosphides [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21(6): 1 | 19 | 孙福侠, 李 灿. 过渡金属磷化物的加氢精制催化性能研究进展 [J]. 石油学报(石油加工), 2005, 21(6): 1) | 20 | LuY, TuJ, GuC, et al. In situ, growth and electrochemical characterization versuslithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy [J]. Journal of Materials Chemistry, 2011, 21(44): 17988 | 21 | KimM G, LeeS, ChoJ. Highly reversible li-ion MoP2 nanoparticle cluster anode for lithium rechargeable batteries [J]. Journal of Electrochemical Society, 2009, 156(2): A89-A94 | 22 | TianJ, LiuQ, AsiriA M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 [J]. Journal of the American Chemical Society, 2014, 136(21): 7587 | 23 | ChengR H, ShuY Y, LiL, et al. Synthesis and characterization of high surface area molybdenum phosphide [J]. Applied Catalysis A General, 2007, 316(2): 160 | 24 | LiW J, ChouS L, WangJ Z, et al. Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability [J]. Advanced Materials, 2014, 26(24): 4037 | 25 | LuY, TuJ P, XiongQ Q, et al. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries [J]. Advanced Functional Materials, 2012, 22(18): 3927 | 26 | DoannguyenV V, ZhangS, TriggE B, et al. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. J. Acs Nano, 2015, 9(8): 8108 | 27 | YangD, ZhuJ X, RuiX H, et al. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries [J]. Acs Applied Materials & Interfaces, 2013, 5(3): 1093 | 28 | BaiY J, ZhangH J, LiX, et al. Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage [J]. Nanoscale, 2015, 7(4): 1446 | 29 | WangX, SunP, QinJ, et al. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. J. Nanoscale, 2016, 8: 10330 | 30 | LiuC J, HuangH, CaoG Z, et al. Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode [J]. Electrochimica Acta, 2014, 144: 376 | 31 | GoodenoughJ B, KimY. Challenges for Rechargeable Li Batteries [J]. Chemistry of Materials, 2015, 22(3): 587 | 32 | HuangH, GaoS, WuA M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation [J]. Nano Energy, 2016, 31: 74 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|