Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 33-41    DOI: 10.11901/1005.3093.2016.791
  研究论文 本期目录 | 过刊浏览 |
厚规格X80管线钢低温断裂行为研究
洪良1, 左秀荣1(), 姬颍伦1, 马歌1, 董俊媛1, 陈雷2
1 郑州大学物理工程学院材料物理教育部重点实验室 郑州 450052
2 郑州航空工业管理学院机电工程学院 郑州 450052
Fracture Behavior of Thick X80 Pipeline Steel Plates at -25℃
Liang HONG1, Xiurong ZUO1(), Yinglun JI1, Ge MA1, Junyuan DONG1, Lei CHEN2
1 School of Physical Engineering, Key Laboratory of Materials and Physics (Zhengzhou University), Ministry of Education, Zhengzhou 450052, China
2 School of Mechatronic Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450052, China
引用本文:

洪良, 左秀荣, 姬颍伦, 马歌, 董俊媛, 陈雷. 厚规格X80管线钢低温断裂行为研究[J]. 材料研究学报, 2018, 32(1): 33-41.
Liang HONG, Xiurong ZUO, Yinglun JI, Ge MA, Junyuan DONG, Lei CHEN. Fracture Behavior of Thick X80 Pipeline Steel Plates at -25℃[J]. Chinese Journal of Materials Research, 2018, 32(1): 33-41.

全文: PDF(10213 KB)   HTML
摘要: 

采用金相显微镜和扫描电子显微镜对厚规格X80管线钢微观组织和-25℃落锤撕裂试验断口形貌进行观察,研究了X80管线钢的断裂行为与组织之间的关系。研究发现,钢板从表面到厚度中心,针状铁素体体积分数逐渐降低,并出现较多的粒状贝氏体、多边形和准多边形铁素体。具有较高针状铁素体体积分数的钢板,其落锤撕裂剪切面积也越高,多边形和准多边形铁素体以及大尺寸MA岛的存在能够导致解理断裂的产生,不利于钢板的低温断裂韧性。在裂纹扩展的过程中,主裂纹附近组织出现变形,导致脆硬性的MA岛周围出现微孔,微孔与微孔之间随着组织变形相互连接而形成微裂纹。二次裂纹通常在针状铁素体周围出现转折或停滞,说明针状铁素体有利于阻碍裂纹的扩展,提高钢板的断裂韧性。

关键词 金属材料管线钢X80落锤撕裂试验断裂行为组织    
Abstract

The effect of microstructure on tearing fracture behavior for thick plates of X80 pipeline steel was assessed at -25 oC by means of drop-weight tear tester (DWTT),as well as optical microscopy and scan electron microscopy (SEM). The result shows that the volume fraction of acicular ferrite reduced gradually in the thickness direction and reached a minimum level at the center of the plate, whilst more volume fraction of granular bainite (GB), polygonal-like ferrite (PF) and quasi-polygonal-like ferrite (QF) appeared. The higher volume fraction of acicular ferrite of the plate is, the larger tearing share area will be. In addition, the existence of PF and QF, and large size martensite-austenite (MA) could lead to the initiation of cleavage crack, and reduce the fracture toughness of the plate. During the crack propagation process, microstructures near the main crack deformed and elongated seriously, but the hard and brittle MA can hardly deform, resulting in the growth of voids and formation of micro cracks. The secondary crack is always reflected by or arrested on acicular ferrite boundaries, which demonstrates that the acicular ferrite has good toughness, and thereby retards the crack propagation effectively.

Key wordsmetallic materials    pipeline steel    X80    drop-weight tear test    fracture behavior    microstructure
收稿日期: 2016-12-30     
ZTFLH:  TG142.1  
作者简介:

作者简介 洪 良,男,1991年生,硕士生

C Mn P S Si Ni+Cr+Cu+Mo Nb+Ti
0.05 1.54 0.010 0.001 0.25 0.386 0.056
表1  X80管线钢化学成 (质量分数, %)
图1  DWTT试验试样尺寸示意图
图2  -25oC时DWTT宏观断口形貌
Sample Share area/% Ductile fracture area/% Initial cleavage
fracture area/%
Inverse cleavage
fracture area/%
1# 91 86.2 1.2 12.6
2# 67 56.1 25.7 18.2
表2  DWTT断口断裂面积分数(测试温度-25oC)
图3  1#、2#试样不同厚度位置带状组织
图4  1#、2#试样不同厚度处SEM照片
Sample Position AF/% GB/% PF+QF/% BF/% MA/%
1# Surface 79.97 10.07 3.54 6.42
1/4 thickness 76.16 8.75 6.20 8.89
1/2 thickness 58.59 18.44 9.37 2.91 10.69
Average 71.57 12.42 6.37 0.97 8.67
2# Surface 71.62 5.74 11.07 0.9 10.67
1/4 thickness 72.81 8.05 7.70 1.0 10.44
1/2 thickness 54.61 20.25 15.30 2.0 7.84
Average 66.35 11.34 11.35 1.30 9.65
表3  X80管线钢中AF, GB, PF+QF, BF和MA体积分数
图5  1#、2#试样不同厚度MA岛组织
图6  1#、2#试样MA岛尺寸分布
图7  DWTT试样断口主裂纹附近组织SEM形貌 (a) 组织变形与微孔分布;(b) (a)图中方框放大图;(c) 解理断裂区主裂纹与组织;(d) 剪切唇区微孔与微裂纹
图8  DWTT断口边缘二次裂纹SEM形貌
[1] Shin Y S, Huang B, Lee S, et al.Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels[J]. Mater. Sci. Eng. A, 2007, 458(1-2): 281
[2] Li C W, Wang Y, Chen Y H.Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones[J]. J. Mater. Sci., 2011, 46(19): 6424
[3] Hong S, Shin S Y, Lee S, et al.Effect of specimen of thickness and notch shape on fracture modes in drop weight tear test of API X 70 and X80 linepipe steels[J]. Metall. Mater. Trans. A, 2011, 42(9): 2619
[4] Nastich S Y.Ferrite-bainitic structure and ductile fracture resistance of high-strength pipe steels[J]. Russian Metallurgy, 2013, 2013(10): 765
[5] Nastich S Y, Soya S V, Molostlv M A, et al.Effect of temperature for the start of finish rolling on coiled steel X70 microstructure and cold resistance[J]. Metallurgist, 2012, 56(7): 57
[6] Orlov V V, Malyshevskii V A, Kulusova E I, et al.Production technology for artic pipeline and marine steel[J]. Steel in Tanslation, 2014, 44(9): 696
[7] Kang K B, Chon S H, Yoo J Y.Microstructure and mechanical properties of heavy gauge API-X80 linepipe steel for artic application[A]. The 22th International Offshore and Polar Engineering Conference[C]. Rhodes, 2012
[8] Nie W J, Xin W F, Xu T M, et al. Enhancing the toughness of heavy thick X80 pipeline steel plates by microstructure control [J]. Advanced Materials Research, 2011, 194-196: 1183
[9] Fujishuro T, Hara T, Terada Y.Application of B-added low carbon bainite steels to heavier wall X80 UOE line pipes [A]. The 19th International Offshore and Polar Engineering Conference[C]. Osaka, 2009
[10] Han S Y, Shin S Y, Seo C H, et al.Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels[J]. Metall. Mater. Trans. A, 2009, 40: 1851
[11] Sung H K, SohnS S, Shin S Y, et al. Effect of finish rolling temperature on inverse fracture occurring during drop weigh tear test of API X80 pipeline steels[J]. Mater. Sci. Eng. A, 2012, 541: 181
[12] Kang M, Kim H, Lee S, et al.Effect of dynamic strain hardening exponent on abnormal cleavage fracture occurring during drop weight tear test of API X70 and X80 linepile steels[J]. Metall. Mater. Trans. A, 2014, 45(2): 682
[13] Kim B C, Lee S, Kim N J, et al.Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds[J]. Metall. Trans. A, 1991, 22(1): 139
[14] Shimamura J, Ishikawa N, Endo S, et al.Development of heavy wall X70 high strain linepipe steel [A]. The 23th International Offshore and Polar Engineering Conference[C]. Anchorage, Alaska, 2013
[15] American Petroleum Institute.Drop-weight tear test on line pipe. API Recommended 5L3[S]. API, Washington, DC, 2014
[16] Deng W, Gao X H, Qing X M, et al.Impact fracture behavior of X80 pipeline steel[J]. Acta. Metall. Sin., 2010, 46(5): 533(邓伟, 高秀华, 秦小梅等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533)
[17] Kim Y M, Shin S Y, Lee H, et al.Effects of molybdenum and vanadium addition on tensile and charpy impact properties of API X70 linepipe steels[J]. Metall. Mater. Trans. A, 2007, 38(8): 1731
[18] Huang G, Wu K M.The effect of relaxing on the grain refinement of low carbon high strength microalloyed steel produced by compact strip production[J]. Met. Mater. Int., 2011, 17(5): 847
[19] Shin Y S, Hwang B, Lee S, et al.Effect of notch shape and specimen thickness on drop weight-tear test properties of API X70 and X80 line-pipe steels[J]. Metall. Mater .Trans. A, 2007, 38(3): 537
[20] Wang B.Study on the fracture behavior of the large deformation pipeline steel[D]. Xi'an: Xi'an Shiyou University, 2014(王博. 大变形管线钢的断裂行为研究[D]. 西安: 西安石油大学, 2014)
[21] Jiang Z H, Wang P, Li D Z, et al.Effect of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel[J]. Acta Metall. Sin., 2015, 51(8): 925(蒋中华, 王培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响[J]. 金属学报, 2015, 51(8): 925
[22] Zhong Y, Xiao F R, Zhang J W, et al.In site TEM study of the effect of MA films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J]. Acta Mater., 2006, 54(2): 435
[23] Shin S Y, Hwang B, Kim S, et al.Fracture toughness analysis in transition temperature region of API X70 pipeline steels[J]. Mater. Sci. Eng. A, 2006, 429(1-2): 196
[24] Miller L E, Smith G C.Tensile fractures in carbon steels[J]. Iron Steel Inst. 1970, 208: 998
[25] Nohava J, Hau?ild P, Karlík M, et al.Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel[J]. Mater. Charact., 2003, 49(3): 211
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.