Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 42-50    DOI: 10.11901/1005.3093.2017.155
  研究论文 本期目录 | 过刊浏览 |
镁锂合金表面水性SiO2@PANI/VTMS涂层的防腐蚀性能
高晓辉1,2, 景晓燕1(), 李玉峰3, 祝晶晶2, 祁实2
1 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2 齐齐哈尔大学化学与化学工程学院 齐齐哈尔 161006
3 齐齐哈尔大学材料科学与工程学院 齐齐哈尔 161006
Anticorrosion Properties of Waterborn SiO2@PANI/VTMS Coating on Surface of Mg-Li Alloy
Xiaohui GAO1,2, Xiaoyan JING1(), Yufeng LI3, Jingjing ZHU2, Shi QI2
1 College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
3 College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
引用本文:

高晓辉, 景晓燕, 李玉峰, 祝晶晶, 祁实. 镁锂合金表面水性SiO2@PANI/VTMS涂层的防腐蚀性能[J]. 材料研究学报, 2018, 32(1): 42-50.
Xiaohui GAO, Xiaoyan JING, Yufeng LI, Jingjing ZHU, Shi QI. Anticorrosion Properties of Waterborn SiO2@PANI/VTMS Coating on Surface of Mg-Li Alloy[J]. Chinese Journal of Materials Research, 2018, 32(1): 42-50.

全文: PDF(2919 KB)   HTML
摘要: 

γ-(2, 3-环氧丙氧)丙基三甲氧基硅烷(GPTMS)对纳米二氧化硅(SiO2)表面进行修饰,再引入苯胺合成了化学键合的核壳型聚苯胺(PANI)接枝SiO2 (SiO2@PANI)溶胶;经乙烯基三甲氧基硅烷(VTMS)原位包埋后得到可直接涂在镁锂合金(Mg-Li)表面的SiO2@PANI/VTMS水性溶胶。使用红外光谱(FT-IR)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等手段表征了SiO2@PANI粒子的结构与形貌;测量极化曲线和电化学阻抗(EIS)表征了SiO2@PANI/VTMS涂层对Mg-Li合金的防腐蚀性能;讨论了苯胺用量和VTMS用量对SiO2@PANI的粒径、涂层疏水性以及防腐蚀性能的影响,给出了可能的防腐蚀机理。结果表明,m(An):m(TEOS)=7:100、m(VTMS):m(TEOS)=4:4的SiO2@PANI/VTMS涂层对Mg-Li合金具有优异的防腐蚀性能,涂层水接触角高达145.5°,电化学阻抗值达到7.5×104 Ωcm2,腐蚀电流密度仅为4.47×10-8 A/cm2

关键词 材料失效与保护聚苯胺纳米SiO2化学键合镁锂合金防腐蚀    
Abstract

Nano-SiO2 was firstly modified by (3-glycidoxypropyl)-trimethoxylsilane (GPTMS), and then was grafted with polyaniline (PANI) to form nano-SiO2 (SiO2@PANI) sol with core-shell structure through chemical bonding. Further, the nano-SiO2 (SiO2@PANI) sol was in situ embedded with vinyl trimethoxysilane (VTMS) to prepare the water-born SiO2@PANI/VTMS sol, which can be used as coating material for Mg-Li alloy. The structure and morphology of SiO2@PANI were characterized by Fourier transform infrared spectrum (FT-IR), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) etc. The corrosion resistance of the coating was assessed by potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The effect of aniline- and VTMS-dosage on the particle size, hydrophobic property and corrosion resistance of SiO2@PANI were also examined, and the possible anticorrosion mechanism was proposed. The results show that the SiO2@PANI/VTMS coatings have a high hydrophobic angle, which could reach 145.5° when m(An):m(TEOS)=7:100 and m(VTMS):m(TEOS)=4:4. The composite coatings on Mg-Li alloy present excellent corrosion resistance performance with electrochemical impedance value 7.5×104 Ωcm2 and corrosion current density 4.47×10-8 A/cm2.

Key wordsmaterials failure and protection    polyaniline    nano-silica    chemical bonding    Mg-Li alloy    anticorrosion
收稿日期: 2017-02-28     
ZTFLH:  TB304  
基金资助:国家自然科学基金(51401113),黑龙江省博士后科研启动金(LBH-Q13171)
作者简介:

作者简介 高晓辉,女,1972年生,副教授

图1  SiO2、PANI和SiO2@PANI的红外光谱图
图2  SiO2、PANI和SiO2@PANI的X射线衍射谱图
图3  SiO2@PANI的X射线光电子能谱
图4  SiO2和m(An):m(TEOS) 不同的SiO2@PANI的透射电子显微镜照片
图5  m(An):m(TEOS) 不同的SiO2@PANI的粒径分布
图6  苯胺用量不同的SiO2@PANI/VTMS复合涂层Mg-Li合金的极化曲线
m(An):m(TEOS) Electrical conductivity/Scm-1 Contact angle/° Corrosion rate/mma-1 Rp/Ωcm2 Icorr/Acm-2 Ecorr/V PEF/%
Mg-Li 1.24×100 5.50×10 4.74×10-4 -1.61 ——
3:100 3.2×10-4 139.4 1.02×10-1 6.67×103 3.91×10-6 -1.57 99.17
5:100 6.9×10-3 140.9 1.60×10-2 4.26×104 6.12×10-7 -1.48 99.87
7:100 7.4×10-2 140.2 3.19×10-3 2.58×105 1.01×10-7 -1.22 99.98
10:100 3.8×10-2 135.7 1.97×10-2 3.47×104 7.51×10-7 -1.29 99.84
20:100 4.2×10-2 129.8 3.57×10-2 1.91×104 1.36×10-6 -1.38 99.71
表1  苯胺用量不同的SiO2@PANI的电导率及SiO2@PANI/VTMS复合涂层接触角和极化曲线拟合数据
图7  苯胺用量不同的SiO2@PANI/VTMS复合涂层Mg-Li合金的电化学阻抗谱
m(VTMS):m(TEOS) Contact angle/° Adhesion / grade Corrosion rate/mma-1 Rp/Ωcm2 Icorr/Acm-2 Ecorr/V PEF/%
Dry Wet
1:4 124.8 2 4 1.09×10-1 6.27×103 4.16×10-6 -1.43 99.12
2:4 131.2 1 2 1.89×10-2 3.61×104 7.22×10-7 -1.30 99.85
3:4 140.2 0 1 3.19×10-3 2.58×105 1.01×10-7 -1.22 99.98
4:4 145.5 0 0 1.17×10-3 5.84×105 4.47×10-8 -1.17 99.99
6:4 139.7 0 0 2.25×10-3 3.04×105 8.57×10-8 -1.20 98.98
表2  VTMS用量不同的SiO2@PAN/VTMS复合涂层的接触角、附着力和极化曲线拟合数据
图8  VTMS用量不同的SiO2@PANI/VTMS复合涂层Mg-Li合金的极化曲线
图9  VTMS用量不同的SiO2@PANI/VTMS复合涂层Mg-Li合金的电化学阻抗谱
图10  涂层下Mg-Li合金表面Mg 1s和O 1s的高分辨X射线光电子能谱
图11  SiO2@PANI/VTMS涂层对Mg-Li合金的防腐蚀机理
[1] Ma L, Liang W C, Gan M Y, et al.Effect of APS/NaClO composite oxidant on morphology and electrochemical properties of polyaniline prepared by emulsion polymerization[J]. Acta Chim. Sinica, 2012, 70(10): 1207(马利, 梁卫朝, 甘孟瑜等. APS/NaClO复合氧化剂对乳液法合成聚苯胺的微观形貌及其电化学性能的影响[J]. 化学学报, 2012, 70(10): 1207)
[2] Xing C J, Yu L M, Zhang Z M.Superhydrophobic polyaniline micro/nano structures as anticorrosion coating[J]. Chem. J. Chinese Universities, 2013, 34(8): 1999(邢翠娟, 于良民, 张志明. 超疏水性聚苯胺微/纳米结构的合成及防腐蚀性能[J]. 高等学校化学学报, 2013, 34(8): 1999)
[3] Wang N, Cheng K Q, Wu H, et al.Preparation and anti-corrosion properties of conductive polyaniline/waterborne epoxy resin coatings[J]. Chin. J. Mater. Res., 2013, 27(4): 432(王娜, 程克奇, 吴航等. 导电聚苯胺/水性环氧树脂防腐涂料的制备及防腐性能[J]. 材料研究学报, 2013, 27(4): 432)
[4] Gordana ? M, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications[J]. Synth. Met., 2013, 177: 1
[5] Liang J, Hu Y C, Wu Y Q, et al.Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution[J]. Surf. Coat. Technol., 2014, 240: 145
[6] Weng C J, Chang C H, Lin I L, et al.Advanced anticorrosion coating materials prepared from ?uoro-polyaniline-silica composites with synergistic effect of superhydrophobicity and redox catalytic capability[J]. Surf. Coat. Technol., 2012, 207: 42
[7] Yu Q J, Xu M, Liu J, et al.Synthesis and properties of PANI/SiO2 organic-inorganic hybrid ?lms[J]. Appl. Surf. Sci., 2012, 263: 532
[8] Chen X, Shen K, Zhang J, et al.Preparation and anticorrosion properties of polyaniline-SiO2-containing coating on Mg-Li alloy[J]. Pigment Resin Technology, 2010, 39: 322
[9] Liu N J, Luo J, Wang X H, et al.Water borne anti-corrosion coating from conductive polyaniline polysilsesquioxane hybrids[J]. Acta Polymerica Sinica, 2009, 2: 173(刘年江, 罗静, 王献红等. 水基导电聚苯胺/二氧化硅杂化材料的防腐性能研究[J]. 高分子学报, 2009, 2: 173)
[10] Kim M Y, Cho S H, Song J Y, et al.Controllable synthesis of highly conductive polyaniline coated silica nanoparticles using self-stabilized dispersion polymerization[J]. ACS Appl. Mater. Interfaces, 2012, 4: 4603
[11] Liu P, Liu W M, Xue Q J, et al.Preparation and characterization of polyaniline grafted silica nanoparticles[J]. Polym. Polym. Compos., 2004, 12: 695
[12] Liu X X, Dou Y Q, Wu J, et al.Chemical anchoring of silica nanoparticles onto polyaniline chains via electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of SiO2 [J]. Electrochim. Acta, 2008, 53: 4693
[13] Weng C J, Chen Y L, Chien C M et al. Preparation of gold decorated SiO2@polyaniline core-shell microspheres and application as a sensor for ascorbic acid[J]. Electrochim. Acta, 2013, 95: 162
[14] Dai C F, Weng C J, Chien C M, et al.Using silane coupling agents to prepare raspberry-shaped polyaniline hollow microspheres with tunable nanoshell thickness[J]. J. Colloid Interface Sci., 2013, 394: 36
[15] Song Y W, Shan D Y, Chen R S, et al.Corrosion characterization of Mg-8Li alloy in NaCl solution,[J]. Corros. Sci., 2009, 51: 1087
[16] Xu L H, Wang L M, Shen Y, et al.Preparation of hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating[J]. Fibers Polym., 2015, 16(5): 1082
[17] Lee S, Hong J Y, Jang J, Synthesis and electrical response of polyaniline/poly(styrene sulfonate)-coated silica spheres prepared by seed-coating method[J]. J. Colloid Interface Sci., 2013, 398: 33
[18] Li Y F, Zhu J J, Gao X H, et al.Preparation of Polyaniline Microemulsion and Anticorrosion Performance of Its Composite Coatings with Versatate-Fluoro-Acrylate Emulsion[J]. Chin. J. Mater. Res., 2016, 30(2): 131(李玉峰, 祝晶晶, 高晓辉等. 聚苯胺微乳液的制备及与叔氟丙烯酸酯乳液复合涂层的防腐性能[J]. 材料研究学报, 2016, 30(2): 131)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 杨小刚, 崔世宏, 李斌, 王传洁, 韩捷佳. 石墨烯/醋酸掺杂态聚苯胺的制备及其防腐性能[J]. 材料研究学报, 2021, 35(5): 357-363.
[9] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.