|
|
厚规格X80管线钢低温断裂行为研究 |
洪良1, 左秀荣1( ), 姬颍伦1, 马歌1, 董俊媛1, 陈雷2 |
1 郑州大学物理工程学院材料物理教育部重点实验室 郑州 450052 2 郑州航空工业管理学院机电工程学院 郑州 450052 |
|
Fracture Behavior of Thick X80 Pipeline Steel Plates at -25℃ |
Liang HONG1, Xiurong ZUO1( ), Yinglun JI1, Ge MA1, Junyuan DONG1, Lei CHEN2 |
1 School of Physical Engineering, Key Laboratory of Materials and Physics (Zhengzhou University), Ministry of Education, Zhengzhou 450052, China 2 School of Mechatronic Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450052, China |
引用本文:
洪良, 左秀荣, 姬颍伦, 马歌, 董俊媛, 陈雷. 厚规格X80管线钢低温断裂行为研究[J]. 材料研究学报, 2018, 32(1): 33-41.
Liang HONG,
Xiurong ZUO,
Yinglun JI,
Ge MA,
Junyuan DONG,
Lei CHEN.
Fracture Behavior of Thick X80 Pipeline Steel Plates at -25℃[J]. Chinese Journal of Materials Research, 2018, 32(1): 33-41.
[1] | Shin Y S, Huang B, Lee S, et al.Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels[J]. Mater. Sci. Eng. A, 2007, 458(1-2): 281 | [2] | Li C W, Wang Y, Chen Y H.Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones[J]. J. Mater. Sci., 2011, 46(19): 6424 | [3] | Hong S, Shin S Y, Lee S, et al.Effect of specimen of thickness and notch shape on fracture modes in drop weight tear test of API X 70 and X80 linepipe steels[J]. Metall. Mater. Trans. A, 2011, 42(9): 2619 | [4] | Nastich S Y.Ferrite-bainitic structure and ductile fracture resistance of high-strength pipe steels[J]. Russian Metallurgy, 2013, 2013(10): 765 | [5] | Nastich S Y, Soya S V, Molostlv M A, et al.Effect of temperature for the start of finish rolling on coiled steel X70 microstructure and cold resistance[J]. Metallurgist, 2012, 56(7): 57 | [6] | Orlov V V, Malyshevskii V A, Kulusova E I, et al.Production technology for artic pipeline and marine steel[J]. Steel in Tanslation, 2014, 44(9): 696 | [7] | Kang K B, Chon S H, Yoo J Y.Microstructure and mechanical properties of heavy gauge API-X80 linepipe steel for artic application[A]. The 22th International Offshore and Polar Engineering Conference[C]. Rhodes, 2012 | [8] | Nie W J, Xin W F, Xu T M, et al. Enhancing the toughness of heavy thick X80 pipeline steel plates by microstructure control [J]. Advanced Materials Research, 2011, 194-196: 1183 | [9] | Fujishuro T, Hara T, Terada Y.Application of B-added low carbon bainite steels to heavier wall X80 UOE line pipes [A]. The 19th International Offshore and Polar Engineering Conference[C]. Osaka, 2009 | [10] | Han S Y, Shin S Y, Seo C H, et al.Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels[J]. Metall. Mater. Trans. A, 2009, 40: 1851 | [11] | Sung H K, SohnS S, Shin S Y, et al. Effect of finish rolling temperature on inverse fracture occurring during drop weigh tear test of API X80 pipeline steels[J]. Mater. Sci. Eng. A, 2012, 541: 181 | [12] | Kang M, Kim H, Lee S, et al.Effect of dynamic strain hardening exponent on abnormal cleavage fracture occurring during drop weight tear test of API X70 and X80 linepile steels[J]. Metall. Mater. Trans. A, 2014, 45(2): 682 | [13] | Kim B C, Lee S, Kim N J, et al.Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds[J]. Metall. Trans. A, 1991, 22(1): 139 | [14] | Shimamura J, Ishikawa N, Endo S, et al.Development of heavy wall X70 high strain linepipe steel [A]. The 23th International Offshore and Polar Engineering Conference[C]. Anchorage, Alaska, 2013 | [15] | American Petroleum Institute.Drop-weight tear test on line pipe. API Recommended 5L3[S]. API, Washington, DC, 2014 | [16] | Deng W, Gao X H, Qing X M, et al.Impact fracture behavior of X80 pipeline steel[J]. Acta. Metall. Sin., 2010, 46(5): 533(邓伟, 高秀华, 秦小梅等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533) | [17] | Kim Y M, Shin S Y, Lee H, et al.Effects of molybdenum and vanadium addition on tensile and charpy impact properties of API X70 linepipe steels[J]. Metall. Mater. Trans. A, 2007, 38(8): 1731 | [18] | Huang G, Wu K M.The effect of relaxing on the grain refinement of low carbon high strength microalloyed steel produced by compact strip production[J]. Met. Mater. Int., 2011, 17(5): 847 | [19] | Shin Y S, Hwang B, Lee S, et al.Effect of notch shape and specimen thickness on drop weight-tear test properties of API X70 and X80 line-pipe steels[J]. Metall. Mater .Trans. A, 2007, 38(3): 537 | [20] | Wang B.Study on the fracture behavior of the large deformation pipeline steel[D]. Xi'an: Xi'an Shiyou University, 2014(王博. 大变形管线钢的断裂行为研究[D]. 西安: 西安石油大学, 2014) | [21] | Jiang Z H, Wang P, Li D Z, et al.Effect of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel[J]. Acta Metall. Sin., 2015, 51(8): 925(蒋中华, 王培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响[J]. 金属学报, 2015, 51(8): 925 | [22] | Zhong Y, Xiao F R, Zhang J W, et al.In site TEM study of the effect of MA films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J]. Acta Mater., 2006, 54(2): 435 | [23] | Shin S Y, Hwang B, Kim S, et al.Fracture toughness analysis in transition temperature region of API X70 pipeline steels[J]. Mater. Sci. Eng. A, 2006, 429(1-2): 196 | [24] | Miller L E, Smith G C.Tensile fractures in carbon steels[J]. Iron Steel Inst. 1970, 208: 998 | [25] | Nohava J, Hau?ild P, Karlík M, et al.Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel[J]. Mater. Charact., 2003, 49(3): 211 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|