Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 679-686    DOI: 10.11901/1005.3093.2016.594
  研究论文 本期目录 | 过刊浏览 |
咪唑基聚离子液体微球的制备及其电流变性能
张志刚, 张红阳, 郝博男, 王梦, 张海全, 刘迎丹(), 张振琳()
燕山大学 亚稳材料制备技术与科学国家重点实验室 材料科学与工程学院 秦皇岛 066004
Preparation and Electrorheological Properties of Imidazolium-based Poly (ionic liquid) Microspheres
Zhigang ZHANG, Hongyang ZHANG, Bonan HAO, Meng WANG, Haiquan ZHANG, Yingdan LIU(), Zhenlin ZHANG()
State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
引用本文:

张志刚, 张红阳, 郝博男, 王梦, 张海全, 刘迎丹, 张振琳. 咪唑基聚离子液体微球的制备及其电流变性能[J]. 材料研究学报, 2017, 31(9): 679-686.
Zhigang ZHANG, Hongyang ZHANG, Bonan HAO, Meng WANG, Haiquan ZHANG, Yingdan LIU, Zhenlin ZHANG. Preparation and Electrorheological Properties of Imidazolium-based Poly (ionic liquid) Microspheres[J]. Chinese Journal of Materials Research, 2017, 31(9): 679-686.

全文: PDF(852 KB)   HTML
摘要: 

用分散聚合方法制备了微米尺寸的咪唑基聚离子液体(PIL)微球颗粒(P[C12VIm][BF4]),使用核磁氢谱、傅里叶红外光谱仪、X射线衍射分析仪和扫描电镜等手段表征材料的结构及形貌,用旋转流变仪和宽频介电谱仪测量了电流变效应和介电性能。结果表明,咪唑基聚离子液体材料具有规则的球形和良好的热稳定性;用这种材料制备的电流变液具有显著的电流变效应,其剪切应力、黏度以及动态模量都随着电场强度的提高而增大,显示出优良的电流变性能。

关键词 有机高分子材料聚离子液体电流变分散聚合咪唑    
Abstract

Imidazolium-based poly(ionic liquid) (PIL) microspheres, poly(1-dodecyl-3-vinylimidazolium tetrafluoroborate) (P[C12VIm][BF4]), were synthesized through a dispersion polymerization process. The structure and morphology of the PIL microspheres were characterized by means of 1H nuclear magnetic resonance, Fourier infrared spectrometer, X- ray diffractometer and scanning electron microscopy. Their electrorheological and dielectric properties were measured by rotational rheometer and broad-band dielectric spectrometer, respectively. The results show that imidazolium-based PIL material is well-defined microspheres and has excellent thermal stability. In this PIL electrorheological system, a remarkable electrorheological effect was observed, in which shear stress, viscosity and dynamic modulus increase with the increasing electric field strength.

Key wordsorganic polymer materials    poly(ionic liquid)    electrorheology    dispersion polymerization    imidazolium
收稿日期: 2016-10-11     
ZTFLH:  O632.6  
基金资助:国家自然科学基金(21403186, 51703193),河北省自然科学基金(E2015203257)以及河北省高等学校科学技术研究项目(QN20131070)
作者简介:

作者简介 张志刚,男,1990年生,硕士生

图1  P[C12VIm][BF4]微球的合成路线图
图2  P[C12VIm][BF4]球形颗粒的SEM图像
图3  P[C12VIm][BF4]微球的XRD图谱
图4  [C12VIm][BF4] 单体和P[C12VIm][BF4] 聚合物的1H NMR谱图
图5  (a) [C12VIm][BF4] (b) P[C12VIm][BF4])的红外光谱图
图6  P[C12VIm][BF4]的TGA曲线
图7  P[C12VIm][BF4]微球在固定剪切速率(γ=1 s-1)下剪切应力与方波电场的关系(t=30 s)
图8  P[C12VIm][BF4]电流变液在不同的电场下剪切应力与剪切速率的关系(T=23℃)
Parameters Electric field strengths / kVmm-1
4.0 3.0 2.0 1.0 0.5
τy 156.340 108.515 76.494 23.612 8.271
t2 0.188 0.268 0.032 0.027 0.406
t3 9.130 0.001 0.005 0.105 0.032
α 1.880 1.568 0.600 0.640 0.626
β 0.967 0.966 0.852 0.812 0.729
η 0.092 0.091 0.089 0.087 0.078
表1  为聚离子液体P[C12VIm][BF4]微球硅油体系流变曲线拟合方程中的参数
图9  P[C12VIm][BF4]微球电流变液的动态屈服应力与电场强度的关系
图10  P[C12VIm][BF4]微球电流变液在不同的电场下剪切黏度与剪切速率的关系
图11  不同电场下P[C12VIm][BF4]微球电流变液储能模量(G')和耗能模量(G′′)与应变的关系
图12  不同电场条件下P[C12VIm][BF4]微球电流变液储能模量(G')和耗能模量(G′′)与角频率的关系
图13  P[C12VIm][BF4]微球电流变液的(a)介电谱图(介电常数ε′:实心;损耗因子ε″:空心)和(b)Cole-Cole拟合曲线
[1] Marins J A, Soares B G, Silva A A, et al.Electrorheological and dielectric behavior of new ionic liquid/silica systems[J]. J. Colloid Interfaces Sci., 2013, 405: 64
[2] Seo Y P, Choi H J, Seo Y.Yield stress analysis of electrorheological suspensions containing core-shell structured anisotropic poly(methyl methacrylate) microparticles[J]. Polym. Adv. Technol., 2015, 26: 117
[3] Jang D S, Zhang W L, Choi H J.Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields[J]. J. Mater. Sci., 2014, 49: 7309
[4] Yin J B, Chang R T, Shui Y J, et al.Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions[J]. Soft Matter, 2013, 9: 7468
[5] Kwon S H, Liu Y D, Choi H J.Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields[J]. J. Colloid Interfaces Sci., 2015, 440: 9
[6] Tsuda K, Hirose Y, Ogura H, et al.Motion control of pattern electrode by electrorheological fluids[J]. Colloids Surf.: Physicochem. Eng. Asp., 2010, 360A: 57
[7] Song X R, Hu A Q, Tan N Y, et al.Influence of amphiprotic groups on the electrorheological behavior of polymers[J]. Mater. Chem. Phys., 2011, 126: 369
[8] Fang F F, Choi H J, Seo Y.Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology[J]. ACS Appl. Mater. Interfaces, 2010, 2: 54
[9] McIntyre E C, Yang H X, Green P F. Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions[J]. ACS Appl. Mat. Interfaces, 2012, 4: 2148
[10] Jiang J L, Tian Y, Meng Y G.Structure parameter of electrorheological fluids in shear flow[J]. Langmuir, 2011, 27: 5814
[11] Ko Y G, Lee H J, Yong J C, et al.Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field[J]. ACS Appl. Mat. Interfaces, 2013, 5: 1122
[12] Tian Y, Meng Y G, Wen S Z.Electrorheology of a zeolite/silicone oil suspension under DC fields[J]. J. Appl. Phys., 2001, 90: 493
[13] Yin J B, Zhao X P.Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2[J]. Chem. Mater., 2002, 14: 4633
[14] Choi H J, Jhon M S.Electrorheology of polymers and nanocomposites[J]. Soft Matter, 2009, 5: 1562
[15] Yilmaz H, Zengin H, Unal H I.Synthesis and electrorheological properties of polyaniline/silicon dioxide composites[J]. J. Mater. Sci., 2012, 47: 5276
[16] Hiamtup P, Sirivat A, Jamieson A M.Strain-hardening in the oscillatory shear deformation of a dedoped polyaniline electrorheological fluid[J]. J. Mater. Sci., 2010, 45: 1972
[17] Kim Y D, Kim H S.Negative electrorheological responses of mono-dispersed polypyrrole-SAN copolymer suspensions[J]. Macromol. Res., 2013, 21: 1153
[18] Sedla?ík M, Mrlík M, Pavlínek V, et al.Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles[J]. Colloid Polym. Sci., 2012, 290: 41
[19] Xia X, Yin J B, Qiang P F, et al.Electrorheological properties of thermo-oxidative polypyrrole nanofibers[J]. Polymer, 2011, 52: 786
[20] Schwarz G, Maisch S, Ullrich S, et al.Electrorheological fluids based on metallo-supramolecular polyelectrolyte-silicate composites[J]. ACS Appl. Mater. Interfaces, 2013, 5: 4031
[21] Quadrat O, Stejskal J.Polyaniline in electrorheology[J]. J. Ind. Eng. Chem., 2006, 12: 352
[22] Cho M S, Kim J W, Choi H J, et al.Polyaniline and its modification for electroresponsive material under applied electric fields[J]. Polym. Adv. Technol., 2005, 16: 352
[23] Geist M F, Boussois K, Smith A, et al.Nanocomposites derived from montmorillonite and metallosupramolecular polyelectrolytes: modular compounds for electrorheological fluids[J]. Langmuir, 2013, 29: 1743
[24] Guzel S, Erol O, Unal H I.Polyindene/organo-montmorillonite conducting nanocomposites. II. Electrorheological properties[J]. J. Appl. Polym. Sci., 2012, 124: 4935
[25] Gordon C M, Holbrey J D, Kennedy A R, et al.Ionic liquid crystals: hexafluorophosphate salts[J]. J. Mater. Chem., 1998, 8: 2627
[26] Marwani H M.Spectroscopic evaluation of chiral and achiral fluorescent ionic liquids[J]. Central Eur. J. Chem., 2010, 8: 946
[27] Mecerreyes D.Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes[J]. Prog. Polym. Sci., 2011, 36: 1629
[28] Yuan J Y, Mecerreyes D, Antonietti M.Poly(ionic liquid)s: an update[J]. Prog. Polym. Sci., 2013, 38: 1009
[29] Lee S, Cummins M D, Willing G A, et al.Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits[J]. J. Mater. Chem., 2009, 19: 8092
[30] Dong Y Z, Yin J B, Zhao X P.Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity[J]. J. Mater. Chem., 2014, 2: 9812
[31] Varma R S, Namboodiri V V.An expeditious solvent-free route to ionic liquids using microwaves[J]. Chem. Commun., 2001, (7): 643
[32] Namboodiri V V, Varma R S.An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves[J]. Tetrahedron Lett., 2002, 43: 5381
[33] Tokuda M, Minami H, Mizuta Y, et al.Preparation of micron-sized monodisperse poly(ionic liquid) particles[J]. Macromol. Rapid Commun., 2012, 33: 1130
[34] Wang D N, Dimonie V L, Sudol E D, et al.Effect of PVP in dispersion and seeded dispersion polymerizations[J]. J. Appl. Polym. Sci., 2002, 84: 2721
[35] Fang F F, Bo M L, Choi H J.Electrorheologically intelligent polyaniline and its composites[J]. Macromol. Res., 2010, 18: 99
[36] Yin J B, Zhao X P, Xiang L Q, et al.Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles[J]. Soft Matter, 2009, 5: 4687
[37] Cho M S, Choi H J, Jhon M S.Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 2005, 46: 11484
[38] Klingenberg D J, van Swol F, Zukoski C F. The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit[J]. J. Chem. Phys., 1991, 94: 6170
[39] Zhang W L, Piao S H, Choi H J.Facile and fast synthesis of polyaniline-coated poly(glycidyl methacrylate) core-shell microspheres and their electro-responsive characteristics[J]. J. Colloid Interface Sci., 2013, 402: 100
[40] Hwang J K, Shin K, Lim H S, et al.The effects of particle conductivity on the electrorheological properties of functionalized MCNT-coated doublet-shaped anisotropic microspheres[J]. Macromol. Res., 2012, 20: 391
[41] Dong Y Z, Yin J B, Yuan J H, et al.Microwave-assisted synthesis and high-performance anhydrous electrorheological characteristic of monodisperse poly(ionic liquid) particles with different size of cation/anion parts[J]. Polymer, 2016, 97: 408
[42] Ikazaki F, Kawai A, Uchida K, et al.Mechanisms of electrorheology: the effect of the dielectric property[J]. J. Phys.: Appl. Phys., 1998, 31D: 336
[43] Cole K S, Cole R H.Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. J. Chem. Phys., 1941, 9: 341
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.