Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 687-694    DOI: 10.11901/1005.3093.2016.741
  研究论文 本期目录 | 过刊浏览 |
钢渣矿渣基全固废胶凝材料的水化反应机理
崔孝炜1,2, 倪文1(), 任超1
1 北京科技大学 工业典型污染物资源化处理北京市重点实验室 北京 100083
2 商洛学院 陕西省尾矿资源综合利用重点实验室 商洛 726000
Hydration Mechanism of All Solid Waste Cementitious Materials Based on Steel Slag and Blast Furnace Slag
Xiaowei CUI1,2, Wen NI1(), Chao REN1
1 Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
2 Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
引用本文:

崔孝炜, 倪文, 任超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31(9): 687-694.
Xiaowei CUI, Wen NI, Chao REN. Hydration Mechanism of All Solid Waste Cementitious Materials Based on Steel Slag and Blast Furnace Slag[J]. Chinese Journal of Materials Research, 2017, 31(9): 687-694.

全文: PDF(1103 KB)   HTML
摘要: 

以钢渣、矿渣和脱硫石膏为主要原料制备胶凝材料,使用XRD、IR、TG-DTA和SEM等手段探究胶凝材料的水化反应机理,研究了钢渣掺量对全固废混凝土强度的影响,以及胶凝材料浆体的pH值和代表性离子浓度的变化规律。结果表明,当原料质量比为m(钢渣):m(矿渣):m(石膏)=30:58:12时,全固废混凝土3 d、7 d和28 d可以获得较优的强度。随着反应龄期的增加胶凝材料水化溶液的pH值先减小后增大,Ca2+浓度和硅(铝)溶解物的早期浓度较低,后期浓度有所提高。在脱硫石膏的激发下钢渣和矿渣相互促进水化,水化产物以钙矾石(AFt)和水化硅酸钙(C-S-H)凝胶为主。在反应的后期,水化产物的数量迅速增加。针棒状的AFt晶体穿插在C-S-H凝胶内,使硬化浆体的结构更加致密。

关键词 无机非金属材料胶凝材料钢渣水化机理    
Abstract

Cementitious materials was prepared with powders of steel slag (SS), blast furnace slag (BFS) and desulfurized gypsum (DG). The influence of SS content on the strength of the concrete composted of all industrial solid wastes was investigated. The hydration mechanism of cementitious materials was characterized by means of XRD, IR, TG-DTA and SEM, while the variation of pH and concentration of the specified ions of cementitious materials were acquired during the hydration process. The results show that when the mass ratio of SS, BFS and DG is m(SS):m(BFS):m(DG)=30:58:12, the concrete possesses a better compressive strength after curing for 3 d, 7 d and 28 d. With the increasing dosage of SS, the pH value and Ca2+ concentration decreased first and then increased. The initial concentration of solutes of silicon (aluminum) was relatively low and then increased later. In the presence of DG, SS and BFS can synergistically promote the hydration and the major hydration products are ettringite (AFt) and calcium silicate hydrate (C-S-H) gels. During the later stage of the hydration process, the quantity of hydration products increased rapidly, forming a composite of C-S-H gel as matrix, within which there existed randomly dispersed needle-like AFt crystallites as strengthening phase, thereby, the hardened cement paste became much dense and hard.

Key wordsinorganic non-metallic materials    steel slag    cementitious materials    hydration mechanism
收稿日期: 2016-12-19     
ZTFLH:  TB321  
基金资助:国家高技术研究发展计划(2012AA062405),陕西省尾矿资源综合利用重点实验室开放基金(2014SKY-WK001)和陕西省自然科学基金(2017JM5125)
作者简介:

作者简介 崔孝炜,男,1988年生,博士生

图1  钢渣的XRD图谱
Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2
Steel slag 18.16 6.24 17.66 42.58 5.26 0.29 0.12 0.12 1.60
Blast furnace slag 26.15 13.49 2.96 41.41 10.09 0.83 0.27 0.35 1.67
Desulfurization gypsum 3.14 1.48 0.71 45.31 0.58 47.26 0.10 0.35 0.07
表1  主要原料化学成分分析结果(%,质量分数)
Number Steel
slag
Blast furnace
slag
Desulfurization gypsum
A1 10 78 12
A2 20 68 12
A3 30 58 12
A4 40 48 12
表2  胶凝材料的组成
图2  钢渣粉掺量对混凝土强度的影响
图3  钢渣粉掺量对胶凝材料水化反应pH值的影响
图4  钢渣粉掺量对胶凝材料中代表性离子浓度的影响
图6  不同龄期净浆试块的IR光谱
图7  试样3 d龄期时的TG-DTA曲线
图8  试样28 d龄期时的TG-DTA曲线
图9  不同反应龄期净浆试块的SEM照片
图10  胶凝材料水化反应机理示意图
图11  钢渣(矿渣)的水化过程模型
图5  不同龄期净浆试块的XRD图谱
[1] National Development and Reform Commission. China Resources Comprehensive Utilization Annual Report (2014) [R]. Recyclable Resources and Circular Economy, 2014(国家发展和改革委员会. 中国资源综合利用年度报告(2014)[R]. 再生资源与循环经济, 2014)
[2] Teng S, Lim T Y D, Sabet Divsholi B. Durability and mechanical properties of high strength concrete incorporating ultrafine ground granulated blast-furnace slag[J]. Construction and Building Materials, 2013(40): 875
[3] Yan P Y, Wang Q.Effect of high temperature curing on the early hydration characteristics of a complex binder containing steel slag[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(6): 790(阎培渝, 王强. 高温养护对钢渣复合胶凝材料早期水化性能的影响[J]. 清华大学学报(自然科学版), 2009, 49(6): 790)
[4] Wang Q, Yan P Y.Hydration properties of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2010, 24(7): 1134
[5] Wang Q, Yan P Y, Kong X M, et al.Compressive strength development and microstructure of cement-asphalt mortar[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(5): 998
[6] Takashima, Koiehi.Modification of steel making reducing slag[P]. Japan, 11310441 2011
[7] Qiu X J, Ni W, Wang S J.Strength development of steel & iron slag cement without clinker in the thermal curing condition[J]. Metal Mine, 2014 (11):171(仇夏杰, 倪文, 王思静. 无熟料钢渣矿渣水泥在热养护条件下的强度发展[J]. 金属矿山, 2014(11): 171)
[8] Kubo, Masaaki. Inorganic hardened bodies and their manufacture from steel making slag: Japan, 11335153[P].2011-03-10
[9] Cheng R G, Wang Z D, Wang L.Hydration characteristic and micro-morphology of composite cementitious materials with blast furnace slag and steel slag[J]. Journal of Wuhan University of Technology, 2012, 34(5): 25(陈日高, 王阵地, 王玲. 钢渣-矿渣-水泥复合胶凝材料的水化性能和微观形貌[J]. 武汉理工大学学报, 2012, 34(5): 25)
[10] Cui X W, Ni W. Effect of steel slag powder addition on properties of high strength tailings concrete[J]. Metal Mine, 2014(9): 177(崔孝炜, 倪文. 钢渣粉掺入对高强尾矿混凝土性能的影响[J]. 金属矿山, 2014(9): 177)
[11] Wu H, Ni W, Cui X W, et al.Preparation of concrete sleeper using hot steaming steel slag with low autogenous shrinkage[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 7(吴辉, 倪文, 崔孝炜, 等. 利用热闷钢渣制备低收缩铁路轨枕混凝土[J]. 材料热处理学报, 2014, 35(4): 7)
[12] Xu Y H, Lu W X, Wang X J, et al.Research and development in activation of steel slag activity[J]. Journal of Shanghai University (Natural Science), 2004, 10(1): 92(许远辉, 陆文雄, 王秀娟, 等. 钢渣活性激发的研究现状与发展[J]. 上海大学学报(自然科学版), 2004, 10(1): 92)
[13] Criado M, Femandez-Jimenez A, Palomo A.Alkali activation of fly ash: effect of the SiO2/Na2O ratio Part I: FTIR study[J]. Microporous and Mesoporous Materials, 2007, 106(1-3): 180
[14] Ping Yu, Kirkpatrick R J, Poe B, et al.Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy[J], J. Am. Ceram. Soc., 1999, 82(3): 742
[15] Huang X L, Zhou S B, Liang X Y, et al.FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013, (1): 23(黄兴亮, 周胜波, 梁小英, 等. 不同来源矿渣水化产物聚合度的FT-IR分析[J]. 水泥工程, 2013(1): 23)
[16] Wang Q, Yan P Y.Early hydration characteristics and paste structure of complex binding material containing high-volume steel slag[J]. Journal of the Chinese Ceramic Society, 2008, 36(10): 1406(王强, 阎培渝. 大掺量钢渣复合胶凝材料早期水化性能和浆体结构[J]. 硅酸盐学报, 2008, 36(10): 1406)
[17] Wang Q, Yan P Y.The influence of steel slag on the hydration of cement during the hydration process of complex binder[J]. Science China Technological Sciences, 2011, 54(2): 388
[18] Pan Q L. Discussion of hydration mechanism of granulated blast furnace slag[J]. Cement, 2004(9): 6)(潘庆林. 粒化高炉矿渣的水化机理探讨[J]. 水泥, 2004(9): 6)
[19] Jia Y T.The hydration mechanism of the BFS and FA cement based materials [D]. Nanjing: Southeast University, 2005.(贾艳涛. 矿渣和粉煤灰水泥基材料的水化机理研究[D]. 南京: 东南大学, 2005)
[20] Ionescu D, Meadowcroft T R, Early age hydration kinetics of steel slags[J]. Advances in Cement Research, 2001, 13(1): 21
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.