Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (12): 931-939    DOI: 10.11901/1005.3093.2016.389
  本期目录 | 过刊浏览 |
混凝土模拟孔溶液中外加电流阴极保护对阳极体系的酸化侵蚀效应*
王羊洋1,胡捷1,2(),郭文昊1,赵翼1,韦江雄1,2,余其俊1,2
1. 华南理工大学材料科学与工程学院 广州 510640
2. 广东省建筑材料低碳技术工程技术研究中心 广州 510640
Effect of Impressed Current Cathodic Protection on Corrosion of Anode in Simulated Concrete Pore Solutions
Yangyang WANG1,Jie HU1,2,*(),Wenhao GUO1,Yi ZHAO1,Jiangxiong WEI1,2,Qijun YU1,2
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2. Guangdong Province Building Materials Engineering Technology Research Center of Low Carbon Technology, Guangzhou 510640, China
引用本文:

王羊洋,胡捷,郭文昊,赵翼,韦江雄,余其俊. 混凝土模拟孔溶液中外加电流阴极保护对阳极体系的酸化侵蚀效应*[J]. 材料研究学报, 2016, 30(12): 931-939.
Yangyang WANG, Jie HU, Wenhao GUO, Yi ZHAO, Jiangxiong WEI, Qijun YU. Effect of Impressed Current Cathodic Protection on Corrosion of Anode in Simulated Concrete Pore Solutions[J]. Chinese Journal of Materials Research, 2016, 30(12): 931-939.

全文: PDF(2924 KB)   HTML
摘要: 

测定了外加电流阴极保护技术作用下混凝土模拟孔溶液的pH值变化, 建立了通电量Q与混凝土模拟孔溶液中氢氧根浓度cOH-的定量关系, 量化表征了钛网阳极表面的腐蚀产物。结果表明, 相同极化时间条件下, 电流密度越高, 阳极区模拟孔溶液中cOH-越低, 钛网表面腐蚀产物越多; 相同极化电流密度条件下, 含Cl-模拟孔溶液中OH-消耗速率要大于无Cl-模拟孔溶液中OH-消耗速率; 外加电流阴极保护过程中混凝土模拟孔溶液cOH-与Q之间的关系符合Logistic回归方程, 基于该方程可预测外加电流阴极保护技术中外部阳极处的pH下降程度, 进而评估其对阳极体系的酸化侵蚀作用。

关键词 材料失效与保护外加电流阴极保护混凝土模拟孔溶液外部阳极,酸化侵蚀    
Abstract

The quantitative relationship between the electric charge quantity (Q) and OH- concentration (cOH-) was established by measuring the variation of pH value of simulated concrete pore solutions by impressed current cathodic protection (ICCP), and corrosion products formed on the titanium mesh electrode were quantitatively characterized. The results indicate that by the same polarization time, a lower cOH- was related to a higher applied current density; the accumulation of corrosion products on titanium mesh surface was also much heavier. By the same current density, the consumption rate of OH- was larger in the chloride-containing solution rather than that in the chloride-free counterpart. The relationship between Q and cOH- in simulated concrete pore solution by the applied cathodic protection follows logistic regression equation, thus this equation can be used to evaluate the descent of pH near the anode, and further predict the effect of acidification of solutions on the corrosion of external anode by the applied cathodic protection.

Key wordsmaterials failure and protection    impressed current cathodic protection    simulated concrete pore solutions    external anode    acidification    erosion
收稿日期: 2016-07-08     
基金资助:* 国家高技术研究发展计划项目2015AA034701, 国家自然科学基金51572088, 广州市珠江科技新星项目201506010004和硅酸盐建筑材料国家重点实验室开放基金SYSJJ2015-08资助
Element C Si Mn S P Fe
Content 0.18 0.28 0.55 0.04 0.04 98.91
表1  Q235钢的化学组成
图1  试验装置示意图
Sample Designations
Without polarization (chloride-free) Ref
With polarization at a current density of 100 mA/m2(chloride-free) S100
With polarization at a current density of 100 mA/m2(chloride-free) S200
Without polarization (chloride-containing) Cl-Ref
With polarization at a current density of 100 mA/m2(chloride-containing) Cl-S100
With polarization at a current density of 200 mA/m2(chloride-containing) Cl-S200
表2  各试样编号
图2  外加电流阴极保护下无Cl-模拟孔溶液中阴/阳极区(a)Na+, (b)K+, (c)Ca2+含量变化
图3  外加电流阴极保护下含Cl-模拟孔溶液中阴/阳极区(a)Na+, (b)K+, (c)Ca2+含量变化
图4  电化学阴极保护对(a)阴极区和(b)阳极区模拟孔溶液pH值的影响
Fig.5  Relationship between OH- concentration in the anode zone and polarization time under 他the conditions of impressed current cathodic protection (a) without Cl-, (b) with Cl-
Parameter Value Standard Error R2
In chloride-free simulated concrete pore solutions c0 0.095 0.003
Q0 81.574 3.971 0.963
p 2.885 0.282
In chloride-containing simulated concrete pore solutions c0 0.096 0.003
Q0 72.065 3.227 0.970
p 3.012 0.281
表3  Logistic方程中各参数经拟合后结果
图6  外加电流阴极保护下阳极区OH-浓度变化与通电量的关系
图7  无Cl-模拟孔溶液中通电15 d后阳极钛网形貌
图8  含Cl-模拟孔溶液中通电15 d后阳极钛网形貌
图9  阳极钛网表面产物XRD结果
1 HONG Dinghai, Corrosion and Protection of Steel Bars in Concrete (Beijing, China Railway Press, 1998)
1 (洪定海, 混凝土中钢筋的腐蚀与保护(北京, 中国铁道出版社, 1998))
2 R. B. Polder, W. H. A.Peelen, M. Raupach, K. Reichling, Economic effects of full corrosion surveys for aging concrete structures, Materials and Corrosion, 64(2), 105(2013)
3 HONG Dinghai, FAN Weiguo, A preliminary study on the applied current cathodic protection technology for the reinforced concrete superstructure(I), Corrosion and Protection, 5(4), 257(1990)
3 (洪定海, 范卫国, 海工钢筋混凝土上部结构外加电流阴极保护技术的初步研究(I), 腐蚀与防护, 5(4), 257(1990))
4 WEI Xinlai, WANG Yijie, Corrosion of steel bars in reinforced concrete bridges and cathodic protection, Vision of Sci. and Tech., 36(23), 285(2012)(魏新来, 王艺杰, 钢筋混凝土桥梁中钢筋锈蚀与其阴极保护, 科技视野, 36(23), 285(2012))
5 MENG Fanchao, WU Weisheng, LIU Minghu, WANG Qi, LIANG Zhang, Innovation of durability design for the bridge of the Hong Kong Macao Bridge, Prestress Tech., 18(06), 11(2010)
5 (孟凡超, 吴伟胜, 刘明虎, 王麒, 梁张, 港珠澳大桥耐久性设计创新, 预应力技术, 18(06), 11(2010))
6 L. Bertolini, F. Bolzoni, P. Pedeferri, Cathodic protection and cathodic prevention in concrete: principles and applications, J. Appl. Electrochem., 28(12), 1321(1998)
7 G. K. Glass, N. R. Buenfeld, On the current density required to protect steel in atmospherically exposed concrete structures, Corros. Sci., 37(10), 1643(1995)
8 J. XU, W. YAO, Characteristics and microscopic mechanism of cathodic protection of reinforced concrete, J. Build. Mater., 13(3), 315(2010)
9 B. Elsener, Long-term durability of electrochemical chloride extraction, Materials and Corrosion, 59(2), 91(2008)
10 L. Page, George Sergi, Development in cathodic protection applied to reinforced concerte, J. Mater. Civil Eng., 12(1), 8(2000)
11 J. Xu, W. Yao, Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode, Constr. Build. Mater., 23(6), 2220(2009)
12 H. McArthur, S. D'Arcy, J. Barker, Cathodic protection by impressed DC currents for construction, maintenance and refurbishment in reinforced concrete, Constr. Build. Mater., 7(2), 85(1993)
13 W. H. A.Peelen, R. B. Polder, E. Redaelli, L. Bertolini, Qualitative model of concrete acidification due to cathodic protection, Materials and Corrosion, 59(2), 81(2008)
14 Andreas Leemann, Barbara Lothenbach, Cédric Thalmann, Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction, Constr. Build. Mater., 25(1), 344-350(2011)
15 F. Puertas, A. Ferna Ndez-Jime Nez, M. T. Blanco-Varela, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement Concrete Res., 34(1), 139(2004)
16 ZHAO Tiejun, ZHOU Zonghui, LIU Junchang, Conductivity of pore solution and permeability of concrete, Concrete, 41(02), 12(2000)
16 (赵铁军, 周宗辉, 刘君昌, 孔溶液电导率与电测混凝土渗透性, 混凝土, 41(02), 12(2000))
17 K. Andersson, B. Allard, M. Bengtsson, B. Magnusson, Chemical composition of cement pore solutions, Cement Concrete Res., 19(03), 327(1989)
18 C. L. Page, Pore solution composition and chloride binding capacity of silica-fume cement pastes, Matériaux et Construction, 16(91), 19(1983)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.