Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (12): 940-946    DOI: 10.11901/1005.3093.2016.152
  本期目录 | 过刊浏览 |
ANPyO高温下热分解过程的分子动力学模拟*
周心龙1,刘祖亮1(),王晓鸣2,郑宇2,施群荣1
1. 南京理工大学化工学院 南京 210094
2. 南京理工大学 智能弹药技术国防重点学科实验室 南京 210094
Thermal Decomposition Behaviour of ANPyO at High Temperature by Molecular Dynamics Simulation
Xinlong ZHOU1,Zuliang LIU1,*(),Xiaoming WANG2,Yu ZHENG2,Qunrong SHI1
1. Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
2. ZNDY of Ministerial Key Laboratory, Nanjing Universityof Science and Technology, Nanjing 210094, China
引用本文:

周心龙,刘祖亮,王晓鸣,郑宇,施群荣. ANPyO高温下热分解过程的分子动力学模拟*[J]. 材料研究学报, 2016, 30(12): 940-946.
Xinlong ZHOU, Zuliang LIU, Xiaoming WANG, Yu ZHENG, Qunrong SHI. Thermal Decomposition Behaviour of ANPyO at High Temperature by Molecular Dynamics Simulation[J]. Chinese Journal of Materials Research, 2016, 30(12): 940-946.

全文: PDF(4112 KB)   HTML
摘要: 

采用ReaxFF力场研究了凝聚相ANPyO在不同温度(T=1500 K、2000 K、2500 K、3000 K、3500 K)的热分解, 通过指数函数拟合势能演化曲线得到了平衡和诱导期以及整体反应时间和热解活化能Ea(88.65 kJmol-1)。结果表明, 晶胞中的ANPyO分子几乎完全分解时系统的势能开始显著衰减, 但是在不同的温度表现出不同的反应机理。在低温(1500 K≤T≤2000 K)下ANPyO热解的初始反应为—NH2 上H转移至ortho—NO2生成H2O和NO分子; 在高温(2500 K≤T≤3500 K)下热解的主要初始反应为C-NO2键的断裂和C—NO2→C—ONO重排布断裂产生NO2和NO。有限时间步长的产物识别分析结果表明, ANPyO热解的主要产物为H2O、N2、NO2、NO、CO2、CO、OH以及HONO。氧化性中间产物NO2、NO、OH以及HONO与NH2、H再次反应, 产生系统最稳定的产物H2O和N2, 从而使其分布显示出剧烈的波动特征。环上基团相互反应或直接脱落后主环间C-C和C-N才发生断裂, 一部分分解成CO2、CO和NO, 另一部分聚集生成碳团簇。

关键词 材料科学其它学科热分解机理ReaxFFANPyO分子动力学    
Abstract

The initial decomposition of the condensed phase ANPyO crystal at various temperature (T=1500 K、2000 K、2500 K、3000 K and 3500 K) were studied by using ReaxFF reactive molecular dynamics simulation. The time evolution curve of the potential energy can be described reasonably well by a single exponential function from which the initial equilibration and induction time as well as the overall characteristic time of pyrolysis were obtained. Afterward, the activation energy Ea (88.65 kJmol-1) also was obtained from these simulations. Result show when the ANPyO molecules in the unit cell almost decomposed, the potential energy of the system significantly attenuated. Meanwhile ANPyO showed different reaction mechanisms at different temperatures. At lower temperatures (1500 K≤T≤2500 K) the hydrogen from NH2 transferred to ortho—NO2 and promote C—NO2 bond fission, while the H2O and NO molecules formed. At very high temperatures 2500 K≤T≤3500 K), the C-NO2 homolytic cleavage and C—NO2→C—ONO rearrangement hemolysis are thermo dynamically favorable pathways in the early thermal decomposition of ANPyO. According to calculations using limited time steps, the main products are H2O、N2、NO2、NO、CO2、CO、OH and HONO. Secondary products are mainly NO2、NO、OH and HONO, which has strong oxidizing property, so that the distribution has a dramatic fluctuation characteristics. It is found that H2O and N2 are the main stable products of thermal decomposition. Pyridine ring fission does not take place until most of the attached groups have interacted or disconnected, and increasing temperature accelerates fission of Pyridine ring and further decomposition to generate both CO2, CO, NO, and amount of carbon-containing clusters.

Key wordsother disciplines of    the materials science    high temperature thermal decomposition    ReaxFF potencial energy    ANPyO    molecular dynamics
收稿日期: 2016-03-20     
基金资助:* 国家自然科学基金11302108资助项目
图1  ANPyO单分子结构及晶胞结构
图2  系统的势能和在反应过程中总物种的时间演化分布
图3  ANPyO在2500~3500 K的初始反应速率常数的对数与温度倒数的关系
图4  在2000 K、2500 K、3000 K和3500 K系统主要产物的演化曲线
图5  在四种不同温度下平均每个ANPyO分子产生的主要产物对比分布曲线
图6  ANPyO的低温分解起始反应历程
图7  ANPyO的高温分解起始反应历程
图8  温度为1500 K、2500 K和3500 K的C—C键径向分布函数
1 Y. Q. Yang, S. F. Wang, Z. Y. Sun, D. D. Dlott, Propagation of shock-induced chemistry in nanoenergetic materials: The first micromete, J. Appl. Phys., 95(7), 3667(2004)
2 F. Castro-Marcano, A. M. Kamat, M. F. Russo, A. C.T. van Duin, J. P. Mathews Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, J. Combustion and Flame, 159(3), 1272(2012)
3 L. C. Liu, C. Bai, H. Sun, W. A. Goddard, Mechanism and kinetics for the initial steps of pyrolysis and combustion of 1, 6-Dicyclopropane-2, 4-hexyne from ReaxFF reactive dynamics, J. Phys. Chem. A, 115(19), 4941(2011)
4 X. F. Ma, W. H. Zhu, J. J. Mao, H. M. Mao, Molecular dynamics study of the structure and performance of simple and double bases propellants, J. Hazard. Mater., 156(1-3), 201(2008)
5 H. Ritter, H. H. Licht, Synthesis and reactions of dinitrated amino and diaminopyridines, J. Heterocycl. Chem., 32(2), 585(1995)
6 A. J.Bellamy FOX-7 (1, 1-diamino-2, 2-dinitroethene), Struc. Bond., 125, 1(2007)
7 MA Congming, LIU Zuliang, XU Xiaojuan, YAO Qizheng, Research progress on the synthesis of energetic pyridines, Chinese Journal of Organic Chemistry, 34, 1288(2014)
7 (马丛明, 刘祖亮, 许晓娟, 姚其正, 吡啶类含能化合物的合成研究进展, 有机化学, 34, 1288(2014))
8 CHEN Jian, YAO Qizheng, ZHOU Xinli, DU Yang, FANG Dong, LIU Zuliang, Novel Synthesis of 2, 6-Diamino-3, 5-dinitropyridine-1-oxide, Chin. J. Org. Chem., 17(11), 166(2008)
8 (成健, 姚其正, 周新利, 杜扬, 方东, 刘祖亮, 2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物的合成新方法, 有机化学, 17(11), 166(2008))
9 LIU Huaning, ZHENG Yu, QIU Congli, WANG Xiaoming, LI Wenbin, CHENG Bo, Experimental study on jet impact sensitivity of a new explosive 2, 6-diamino-3, 5-dinitropyridine-1-oxide, Chinese Jornal of Energetic Materials, 22(3), 337(2014)
9 (刘华宁, 郑宇, 邱从礼, 王晓鸣, 李文彬, 程波, 新型炸药2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物的射流冲击感度实验研究, 含能材料, 22(3), 337(2014))
10 Z. W. He, S. Q. Zhou, X. H. Ju, Z. L. Liu, Computational investigation on 2, 6-diamino-3, 5-dinitropyridine-1-oxide crystal, Struct. Chem., 21(3), 651(2010)
11 HE Zhiwei, YAN Shilong, LIU Zuliang, Thermal decomposition characteristics of 2, 6-diamino-3, 5-dinitropyridine-1-oxide, Chin. J. Exp. Pro., 36(6), 51(2013)
11 (何志伟, 颜事龙, 刘祖亮, 2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物的热分解特性, 火炸药学报, 36(6), 51(2013))
12 A. C. T.Van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, 105(41), 9396(2001)
13 G. Chevrot, A. Sollier, N. Pineau, Molecular dynamics and kinetic study of carbon coagulation in the release wave of detonation products, J. Chem. Phys., 136(8), 191(2012)
14 S. Agrawalla, A. C. T.Van Duin, Development and application of a ReaxFF reactive force field for hydrogen combustion, J. Phys. Chem. A, 115(6), 960(2011)
15 Q. An, S. V. Zybin, W. A. Goddard, A. Jaramillo-Botero, M. Blanco, S. N. Luo, Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials, Phys. Rev. B, 84, 220101(2011)
16 J. Budzien, A. P. Thompson, S. V. Zybin, Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrat, J. Phys. Chem. B, 113(40), 13142(2009)
17 A. Strachan, E. M. Kober, A. C. T.Van Duin, J. Oxgaard, W. A. Goddard, Thermal decomposition of RDX from reactive molecular dynamic, J. Chem. Phys., 122(5), 054502(2005)
18 J. Quenneville, T. C. Germann, A. P. Thompson, Molecular dynamics studies of thermal induced chemistry in TATB, Shock Compression of Condensed Matter, 955(1), 451(2007)
19 L. Zhang, S.V. Zybin, A.C.T.Van-Duin, S. Dasgupta, W. A. Goddard, Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7- tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations, J. Phys. Chem. A, 113(40), 10619(2009)
20 FU Xiancai, SHEN Wenxia, YAO Tianyang, HOU Wenhua, Physical Chemistry (Beijing, Higher Education Press, 2007) p.154
20 (傅献彩, 沈文霞, 姚天扬, 侯文华, 物理化学 (北京, 高等教育出版社, 2007))p.154
[1] 季洪梅, 王絮, 李小武. 贝壳珍珠质及交叉叠片结构体外类骨磷灰石生长的对比研究[J]. 材料研究学报, 2023, 37(4): 241-247.
[2] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[3] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[4] 施渊吉, 陈显冰, 吴修娟, 王红军, 郭训忠, 黎军顽. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制[J]. 材料研究学报, 2020, 34(8): 628-634.
[5] 柴卫红, 汪焰恩, 魏庆华, 杨明明, 李欣培, 魏生民. 骨支架3D打印成型粘结机理的分子动力学研究*[J]. 材料研究学报, 2016, 30(8): 568-574.
[6] 汪焰恩,魏庆华,杨明明,魏生民. 羟基磷灰石/α-氰基丙烯酸正丁酯相互作用及力学性能的MD模拟*[J]. 材料研究学报, 2014, 28(2): 133-138.
[7] 韩同伟 贺鹏飞 王健 郑百林. β--SiC纳米丝拉伸变形的分子动力学研究[J]. 材料研究学报, 2009, 23(4): 337-342.
[8] 沈海军; 穆先才 . C60、C180、C60@C180富勒烯分子的压缩力学特性与电子结构[J]. 材料研究学报, 2006, 20(1): 93-98.
[9] 沈海军; 史友进 . 碳及内嵌金属原子富勒稀分子的压缩力学特性[J]. 材料研究学报, 2004, 18(6): 647-653.
[10] 王宇; 王秀喜; 倪向贵 . 碳纳米管的压缩屈曲机理和电子结构[J]. 材料研究学报, 2003, 17(6): 597-602.
[11] 胡巧玲; 李晓东; 沈家骢 . 仿生结构材料的研究进展[J]. 材料研究学报, 2003, 17(4): 337-344.
[12] 张人佶; 熊卓; 王笠 . 聚乳酸组织工程支架表面涂覆钙磷盐的工艺研究[J]. 材料研究学报, 2003, 17(2): 145-150.
[13] 吴恒安; 王秀喜; 倪向贵; 王宇 . 铜纳米杆弯曲行为动态特性的模拟[J]. 材料研究学报, 2002, 16(6): 590-594.
[14] 沙宪伟; 张修睦; 李斌; 李依依 . 裂纹对NiAl马氏体相变影响的微观机理[J]. 材料研究学报, 1999, 13(2): 135-141.
[15] 胡壮麒;王鲁红;刘轶. 电子和原子层次材料行为的计算机模拟[J]. 材料研究学报, 1998, 12(1): 1-19.