Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (9): 671-678    DOI: 10.11901/1005.3093.2015.134
  本期目录 | 过刊浏览 |
优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料
张浩(),黄新杰,刘秀玉,唐刚
安徽工业大学建筑工程学院 马鞍山 243032
Optimization for Preparation of Phase Change and Humidity Control Composite Materials of Hexadecanol-Palmitic Acid-lauric Acid/SiO2
Hao ZHANG(),Xinjie HUANG,Xiuyu LIU,Gang TANG
School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China
引用本文:

张浩,黄新杰,刘秀玉,唐刚. 优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料[J]. 材料研究学报, 2015, 29(9): 671-678.
Hao ZHANG, Xinjie HUANG, Xiuyu LIU, Gang TANG. Optimization for Preparation of Phase Change and Humidity Control Composite Materials of Hexadecanol-Palmitic Acid-lauric Acid/SiO2[J]. Chinese Journal of Materials Research, 2015, 29(9): 671-678.

全文: PDF(1287 KB)   HTML
摘要: 

以SiO2为载体材料、以棕榈醇-棕榈酸-月桂酸为相变材料制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料, 基于均匀设计和多元非线性回归法研究了各因素对复合相变调湿材料调湿性能和控温性能的影响。结果表明, 各因素对性能影响大小的排序为: 无水乙醇与正硅酸乙酯的物质的量比、溶液pH值、棕榈醇-棕榈酸-月桂酸与正硅酸乙酯的物质的量比、超声波功率、去离子水与正硅酸乙酯的物质的量比; 优化制备方案为: 溶液的pH值为2.68、超声波功率为113 W、去离子水与正硅酸乙酯的物质的量比为9.03、无水乙醇与正硅酸乙酯的物质的量比为5.22、棕榈醇-棕榈酸-月桂酸与正硅酸乙酯的物质的量比为0.51。

关键词 无机非金属材料棕榈醇-棕榈酸-月桂酸SiO2调湿性能控温性能优化制备    
Abstract

Phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2 were prepared with SiO2 as carrier material and hexadecanol-palmitic acid-lauric acid as phase change material. The effect of processing parameters on performance of humidity- and temperature-control of the composite materials was investigated by uniform design and multivariate nonlinear regression. The results show that their effect may be ranked as a sequence as follows: mole ratio of absolute alcohol to tetraethyl orthosilicate > solution pH value > mole ratio of hexadecanol-palmitic acid-lauric acid to tetraethyl orthosilicate > ultrasonic wave power > mole ratio of deionized water to tetraethyl orthosilicate. The optimal processing parameters are as follows: solution pH value 2.68, ultrasonic wave power 113 W, mole ratio of deionized water to tetraethyl orthosilicate 9.03, mole ratio of absolute alcohol to tetraethyl orthosilicate 5.22, mole ratio of decanoic-palmitic acid to tetraethyl orthosilicate 0.51.

Key wordsinorganic non-metallic materials    hexadecanol-palmitic acid-lauric acid    SiO2    humidity controlling performance    temperature controlling performance    optimized preparation
收稿日期: 2015-03-17     
基金资助:* 国家自然科学基金资助项目51206002。
Molecular formula Solubility /(g100 g-1) Relative humidity/%
MgCl2 54.25 32.78
K2CO3 112.00 43.16
Mg(NO3)2 125.00 52.89
CoCl2 45.00 64.92
NaCl 39.12 75.29
KCl 34.70 84.34
K2SO4 12.00 97.30
表1  饱和盐溶液的相对湿度
No. Factors
A B C D E
1# 2 200W 9 6 1
2# 3 400W 5 5 1
3# 4 100W 11 3 0.8
4# 5 300W 5 7 0.8
5# 6 500W 11 6 0.6
6# 2 100W 7 4 0.6
7# 3 300W 13 3 0.4
8# 4 500W 7 7 0.4
9# 5 200W 13 5 0.2
10# 6 400W 9 4 0.2
表2  棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的均匀设计
Relative humidity /% Equilibrium moisture content/(g/g)
1# 2# 3# 4# 5#
Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption
32.78 0.0348 0.0381 0.0332 0.0372 0.0434 0.0497 0.0341 0.0371 0.0281 0.0299
43.16 0.0425 0.0467 0.0397 0.0448 0.0530 0.0606 0.0405 0.0442 0.0335 0.0359
52.89 0.0463 0.0516 0.0431 0.0491 0.0578 0.0663 0.0436 0.0477 0.0361 0.0390
64.92 0.0497 0.0541 0.0461 0.0513 0.0614 0.0688 0.0467 0.0504 0.0386 0.0412
75.29 0.0565 0.0600 0.0523 0.0571 0.0704 0.0768 0.0528 0.056 0.0434 0.0454
84.34 0.0669 0.0688 0.0610 0.0652 0.0840 0.0883 0.0620 0.0644 0.0507 0.0520
97.30 0.0806 0.0804 0.0746 0.0748 0.1027 0.1029 0.0744 0.0747 0.0603 0.0606
Relative humidity /% Equilibrium moisture content/(g/g)
6# 7# 8# 9# 10#
Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption
32.78 0.0545 0.0614 0.0931 0.1045 0.0816 0.0912 0.0827 0.0930 0.0471 0.0532
43.16 0.0695 0.0786 0.1151 0.1297 0.1012 0.1136 0.1019 0.1144 0.0576 0.0653
52.89 0.0772 0.0873 0.1260 0.1428 0.1110 0.1255 0.1114 0.1252 0.0628 0.0715
64.92 0.0838 0.93 0.1364 0.1517 0.1202 0.1329 0.1204 0.1332 0.0678 0.0757
75.29 0.0973 0.1045 0.1570 0.1694 0.1390 0.1493 0.1388 0.1491 0.0778 0.0840
84.34 0.1171 0.1211 0.1881 0.1952 0.1668 0.1737 0.1666 0.1734 0.0927 0.0965
97.30 0.1438 0.1436 0.2293 0.2308 0.2045 0.2056 0.2034 0.2048 0.1125 0.1129
表3  棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的平衡含湿量
图1  棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的步冷曲线图
No. Humidity controlling performance Temperature controlling performance Goal value
Absorption/(g/g) Desorption/(g/g) Average value/(g/g) Y1 Cooling time/s Y2 Y
1# 0.0806 0.0804 0.0805 0.3499 1740 0.9305 1.2804
2# 0.0746 0.0748 0.0747 0.3247 1870 1.0000 1.3247
3# 0.1027 0.1029 0.1028 0.4469 1330 0.7112 1.1581
4# 0.0744 0.0747 0.0746 0.3241 1565 0.8369 1.1610
5# 0.0603 0.0606 0.0605 0.2628 1310 0.7005 0.9633
6# 0.1438 0.1436 0.1437 0.6246 1575 0.8422 1.4669
7# 0.2293 0.2308 0.2301 1.0000 735 0.3930 1.3930
8# 0.2045 0.2056 0.2051 0.8913 760 0.4064 1.2977
9# 0.2034 0.2048 0.2041 0.8872 705 0.3770 1.2642
10# 0.1125 0.1129 0.1127 0.4899 865 0.4626 0.9525
表4  目标值Y
Items Beta Bt R
Constant -0.3243 0.0000 0.9982
A 0.2411 2.1464
B 0.0013 1.1885
C -0.0001 0.3594
D 0.4488 3.9954
E 1.0866 1.9344
A2 -0.0450 3.2405
B2 0.0000 1.2807
C2 0.0000 0.0000
D2 -0.0430 3.8526
E2 -1.0912 2.3761
表5  Y的相关系数
图2  优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的平衡含湿量图
图3  优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的步冷曲线图
图4  SiO2、棕榈醇-棕榈酸-月桂酸、棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的红外光谱图
图5  SiO2、棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的SEM像
图6  棕榈醇-棕榈酸-月桂酸、棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的DSC曲线
1 A. Pasupathy, L. Athanasius, R. Velraj, R.V. Seeniraj,Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Applied Thermal Engineering, 28(5-6), 556(2008)
2 C. K. Huynh,Building energy saving techniques and indoor air quality: a dilemma, International Journal of Ventilation, 9(1), 93(2010)
3 Z. H. Rao, S. F. Wang, Z. G. Zhang,Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate, Renewable and Sustainable Energy Reviews, 16(5), 3136(2012)
4 S. D. Sharma, H. Kitano, K. Sagara,Phase change materials for low temperature solar thermal applications, Res. Rep. Fac. Eng. Mie. Univ., 29, 31(2004)
5 D. Suresh, C. Raja, C. Dhanesh,Heat capacity measurement of organic thermal energy storage materials, J. Chem. Thermodynamics, 38, 1312(2006)
6 B. X. Li, T. X. Liu, L. Y. Hu, L. N. Gao,Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chemistry & Energy, 1(3), 374(2013)
7 ZHANG Hong,WU Xiaohua, WANG Xiaolei, WANG Qianqian, Structure and properties of lauric acid/cetyl alcohol/silicon dioxide composite phase change material, Journal of Materials Science & Engineering, 28(5), 672(2010)
7 (张 鸿, 武晓华, 王晓磊, 王倩倩, 月桂酸/十六醇/二氧化硅复合相变材料的结构与性能, 材料科学与工程学报, 28(5), 672(2010))
8 G. Y. Fang, Z. Chen, H. Li,Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials, Chemical Engineering Journal, 163(1-2), 154(2010)
9 YU Yongsheng,JING Qiangshan, SONG Fangfang, Study on the ternary phase change system of H/PA/LA, Journal of Building Materials, 16(1), 97(2013)
9 (于永生, 井强山, 宋方方, 十六醇/十六酸/十二酸三元复合相变体系研究, 建筑材料学报, 16(1), 97(2013))
10 FU Lujun,DONG Faqin, YANG Yushan, HE Ping, Preparation and characterization of binary fatty acid/SiO2 composite phase change energy storage materials, Journal of Functional Materials, 44(4), 1(2013)
10 (付路军, 董发勤, 杨玉山, 何 平, 二元脂肪酸/SiO2复合相变储能材料的制备与表征, 功能材料, 44(4), 1(2013))
11 MENG Duo,WANG Lijiu, Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material, Journal of Building Materials, 16(1), 91(2013)
11 (孟 多, 王立久, 脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能, 建筑材料学报, 16(1), 91(2013))
12 ZHANG Hao,HUANG Kai, HUANG Xinjie, Study on degradation effect of Ce-TiO2 photocatalyst coating on formaldehyde solution and its prediction model, Chinese Rare Earths, 35(4), 18(2014)
12 (张 浩, 黄 凯, 黄新杰, Ce-TiO2光催化涂料降解甲醛溶液的性能研究及预测模型, 稀土, 35(4), 18(2014))
13 LI Kuishan,ZHANG Xu, HAN Xing, ZHU Dongming. Experimental research of isothermal sorption curve of building materials, Journal of Building Materials, 12(1), 81(2009)
13 (李魁山, 张 旭, 韩 星, 朱东明, 建筑材料等温吸放湿曲线性能实验研究, 建筑材料学报, 12(1), 81(2009))
14 HUANG Zishuo,YU Hang, ZHANG Meiling, Humidity-control materials and their humidity absorption and desorpttion rate variation, Journal of Tongji University(Natural Science), 42(2), 310(2014)
14 (黄子硕, 于航, 张美玲, 建筑调湿材料吸放湿速度变化规律, 同济大学学报(自然科学版), 42(2), 310(2014))
15 S. Karaman, A. Karaipekli, A. Sari, A. Bicer . Polyethylene glycol(PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Solar Energy Materials and Solar Cells, 95(7), 1647(2011)
16 XIE Suchao,GAO Guangjun. Multiple nonlinear regression anaiysis for energy absorbing prediction of thin-walled structure, Journal of Basic Science and Engineering, 18(4), 714(2010)
16 (谢素超, 高广军, 薄壁结构吸能预测的多元非线性回归分析, 应用基础与工程科学学报, 18(4), 714(2010))
17 ZHOU XiaoHua,ZHANG ShuRen, TANG Bin, Multiple non-linear regression analysis for complex doping of X7R MLCC ceramics, Journal of Inorganic Materials, 21(3), 683(2006)
17 (周晓华, 张树人, 唐 斌, 环保型多重掺杂X7R瓷料的多元非线性回归分析, 无机材料学报, 21(3), 683(2006))
18 YANG Duo,Space tube-shaped fitting algorithm based on spatial Gauss-Newton method, Journal of Dalian University, 35(3), 19(2014)
18 (杨铎, 基于Gauss-Newton法的空间管形拟合算法的研究, 大连大学学报, 35(3), 19(2014))
19 HAN Min, WANG Yanan. A Newton Algorithm for Nonlinear Regression, Chinese Journal of Computers, 33(5), 841(2010)
19 (韩 敏, 王亚楠, 求解非线性回归问题的Newton算法, 计算机学报, 33(5), 841(2010))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.