Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 849-852    DOI: 10.11901/1005.3093.2014.214
  本期目录 | 过刊浏览 |
碳纳米管对中间相炭微球抗氧化性能的影响*
王志(),范恒冰,马文斌,徐艳英,张旭,陈健,王旭
沈阳航空航天大学 沈阳 110136
Influence of Carbon Nanotubes on Oxidation Resistance of Bulk Composites of Mesocarbon Microbeads and Carbon Nanotubes
Zhi WANG(),Hengbing FAN,Wenbin MA,Yanying XU,Xu ZHANG,Jian CHEN,Xu WANG
Shenyang Aerospace University, Shenyang 110136
引用本文:

王志,范恒冰,马文斌,徐艳英,张旭,陈健,王旭. 碳纳米管对中间相炭微球抗氧化性能的影响*[J]. 材料研究学报, 2014, 28(11): 849-852.
Zhi WANG, Hengbing FAN, Wenbin MA, Yanying XU, Xu ZHANG, Jian CHEN, Xu WANG. Influence of Carbon Nanotubes on Oxidation Resistance of Bulk Composites of Mesocarbon Microbeads and Carbon Nanotubes[J]. Chinese Journal of Materials Research, 2014, 28(11): 849-852.

全文: PDF(3109 KB)   HTML
摘要: 

通过原位热缩聚、模压成型、高温烧结制备了中间相炭微球/碳纳米管复合块体材料, 采用热重分析和恒温氧化方法研究了碳纳米管对中间相炭微球抗氧化性能的影响。结果表明: 原位添加适当比例的碳纳米管可以增强中间相炭微球的抗氧化性能。随着碳纳米管含量的增加, 碳化处理后的炭材料微晶层间距变小, 抗氧化性能增强; 当添加5%碳纳米管时, 样品初始失重温度提高了40℃, 氧化10小时后质量损失仅为8.55%; 但过多的碳纳米管会使微球粒径分布变宽, 球形度变差, 导致块体材料气孔率增加, 降低了其抗氧化性能。

关键词 无机非金属材料碳纳米管中间相炭微球抗氧化    
Abstract

Bulk composite of mesocarbon microbeads and carbon nanotubes (MCMB/CNTs) was prepared by in-situ thermal polymerization, compression molding and high-temperature sintering. The oxidation resistance of MCMB/CNTs was studied using TG, and isothermal oxidation method. It was found that the oxidation resistance of the composites was enhanced by adding proper amount of CNTs in the matrix. With the increasing amount of CNTs, the interplanar spacing of microcrystall on the carbonized composites decreased and the oxidation resistance became better. An addition of 5% CNTs can induce about 40℃ increase in the initial mass loss temperature of the composite, and the mass loss of the composite was only 8.55% after isothermal oxidation in air for 10 h. But with addition of excessive CNTs, the particle size distribution of the microbeads was broadened and the degree of sphericity of the composite became poor, which led the composite with higher porosity and lower oxidation resistance.

Key wordsinorganic non-metallic materials    carbon nanotube    mesocarbon microbead    oxidation resistance
收稿日期: 2014-04-25     
基金资助:* 沈阳市科技计划F12-277-1-33和辽宁省高等学校杰出青年学者成长计划LJQ2012014资助项目。
图1  不同MCMB样品的TG曲线
图2  不同MCMB样品在420℃的等温氧化曲线
CNT(%) 2θ d (A) 002
0 24.675 3.6050
5 25.641 3.4714
10 25.821 3.4476
表1  不同MCMB样品的微晶结构参数
CNT(%) Porosities
0 6.9%
2 3.6%
5 2.9%
10 29.3%
表2  不同MCMB样品的孔隙率
图3  不同MCMB样品的SEM图像
1 H. Fujimoto,The production method of mesocarbon microbeads and their application, Carbon, 48(8), 2381(2010)
2 Y. S. Yang, C. Y. Wang, M. M. Chen, J. M. Zheng,The role of primary quinoline insoluble on the formation of mesocarbon microbeads, Fuel Processing Technology, 92(1), 154(2011)
3 C. Norfolk, A. Mukasyan, D. Hayes, P. McGinn,?A. Varma. Processing of mesocarbon microbeads to high-performance materials: Part I. Studies towards the sintering mechanism, Carbon, 42(1), 11(2004)
4 C. J. Zhou, P. J. McGinn. The effect of oxygen on the processing of mesocarbon microbeads to high-density carbon, Carbon, 44(9), 1673(2006)
5 Y. Gao, H. H. Song, X. H. Chen. Self-sinterability of mesocarbon microbeads (MCMB) for preparation of high-density isotropic carbon, Journal of Materials Science, 38(10), 2209(2003)
6 J. E. Sheehan, K. W. Buesking, B. J. Sullivan. Carbon-carbon composites, Annual Review of Materials Science, 24, 19(1994)
7 C. J. Zhou, W. S. Kinman, P. J. McGinn,The effect of heat-treatment temperature on structure and properties of TiB2/C composites, Carbon, 45(6), 1200(2007)
8 Z. J. Liu, Q. G. Guo, J. R. Song, L. Liu. Effect of Ti dopant on shrinkage performance of MCMB-derived carbon laminations, Carbon, 45(1), 146(2007)
9 LIAO Baolian,HUANG Li, XIA Hongyan, WANG Jiping, Carbon/carbon composites prepared from mesocarbon microbeads reinforced by carbon fiber, Journal of The Chinese Ceramic Society, 40(5), 723(2012)
9 (廖宝莲, 黄 丽, 夏鸿雁, 王继平, 炭纤维增强中间相炭微球制备炭/炭复合材料, 硅酸盐学报, 40(5), 723(2012))
10 Saeed Safi,Asghar Kazemzadeh. MCMB-SiC composite; new class high-temperature structural materials for aerospace applications, Ceramics International, 39(1), 81(2013)
11 M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson,Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, 678(1996)
12 D. A. Walters, L. M. Ericson,?M. J. Casavant,?J. Liu,?D. T. Colbert,?K.A. Smith, R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes, Applied Physics Letters, 74(25), 3803(1999)
13 S. Ijima, C. Brabec, A. Maiti, J. Bernholc,Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, 104(5), 2089(1996)
14 B. Wu, Q. M. Gong, J. J. Wu, H. H. Song, J. Liang, Densification of in situ prepared mesocarbon microbead/carbon nanotube composites by hot-press sintering, Transactions of Nonferrous Metals Society of China, 19(3), 646(2009)
15 HUANG Qizhong,Fabrication, structure and application of high-performance carbon/carbon composites, the first edition, (Changsha, Central South University press, 2010) p.425
15 (425)
16 WANG Zhi,WANG Xu, YU Chunhong, Influence of carbon nanotubes on the preparation of mesocarbon microbeads, Journal of Function Materials, S5, 927(2011)
16 (王 志, 王 旭, 于春宏, 碳纳米管对中间相炭微球制备的影响, 功能材料, S5, 927(2011))
17 Z. Wang, B. Wu, Q. M. Gong, H. H. Song, J. Liang,In situ fabrication of carbon nanotube/mesocarbon microbead composites from coal tar pitch, Materials Letters, 62(20), 3585(2008)
18 M. F. Lai, J. Li, J. Yang, J. J. Liu, X. Tong, H. M. Cheng,The morphology and thermal properties of multi-walled carbon nanotube and poly (hydroxybutyrate -co-hydroxyval--erate) composite, Polymer International, 53(10), 1479(2004)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.