Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 853-857    DOI: 10.11901/1005.3093.2014.280
  本期目录 | 过刊浏览 |
酚醛树脂共聚改性竹纤维复合材料的制备及其碳化行为
方红霞1(),吴强林1,2,江蓉1,李海云1,郑雨1,韩信1
1. 黄山学院应用化学研究所 黄山 245041
2. 合肥工业大学高分子材料与化工研究所 合肥 230009
Preparation and Carbonization Behavior of Bamboo Fiber Modified by Copolymerized Phenolic Resin
Hongxia FANG1,**(),Qianglin WU1,2,Rong JIANG1,Haiyun LI1,Yu ZHENG1,Xin HAN1
1. Applied Chemistry Laboratory, Huangshan University, Huangshan 245041
2. Institute of Chemical Engineering and Polymer Materials, Hefei University of Technology, Hefei 230009
引用本文:

方红霞,吴强林,江蓉,李海云,郑雨,韩信. 酚醛树脂共聚改性竹纤维复合材料的制备及其碳化行为[J]. 材料研究学报, 2014, 28(11): 853-857.
Hongxia FANG, Qianglin WU, Rong JIANG, Haiyun LI, Yu ZHENG, Xin HAN. Preparation and Carbonization Behavior of Bamboo Fiber Modified by Copolymerized Phenolic Resin[J]. Chinese Journal of Materials Research, 2014, 28(11): 853-857.

全文: PDF(1663 KB)   HTML
摘要: 

用超声浸渍和热处理法制备酚醛树脂共聚改性竹纤维复合材料(PR-BF), 研究了PR-BF的碳化性能及其机理。结果表明, 在超声及热处理条件下, 竹纤维(BF)具有很好的吸胶性能; 红外光谱分析结果表明, 酚醛树脂(PR)通过共聚反应接枝到竹纤维表面。碳化实验结果表明, 与BF相比, PR-BF的热稳定性显著提高, 25%PR-BF 在900℃碳化后残碳率达到37.75%。用红外光谱法探讨了PR改性BF的碳化机理。结果表明, PR-BF发生热解的同时, BF还与PR通过进一步的共聚反应形成了新的苯环取代结构, 使PR-BF表现出比BF高得多的热稳定性和残碳率。SEM结果表明, PR-BF碳化后出现纳米级纤维状粉体。

关键词 复合材料竹纤维酚醛树脂共聚改性碳化    
Abstract

Copolymerized phenolic resin modified bamboo fiber composites(PR-BF) were prepared by a two step process i.e. firstly the bamboo fiber was immersed in an ultrasound irradiated bath of proper water solution of copolymerized phenolic resin and then undergone a heat treatment. The PR-BF composite was characterized by FTIR and its thermal property was examined by means of TG and DTG. The results show that bamboo fiber had excellent absorbability of phenolic resin; the phenolic resin is grafted on to bamboo fiber by copolymerization reaction; the thermal stability of the PR-BF composite increased dramatically with the increasing PR solid content in the solution; and the carbon residue of PR-BF reached a climax of 37.75% for the carburization at 900℃. From the FTIR analysis results it follows that in company with the thermal decomposition of PR-BF, a novel substitution product of benzene might form due to the copolymerization of BF with PR, which results in better thermal stability for PR-BF rather than the merely BF, and better resistance to elevated temperature rather than of the merely phenolic resin. Besides, after carburization the formed fiber-like nano-powders were good dispersed in PR-BF composite.

Key wordscomposites    bamboo fiber    phenolic resin    copolymerization    carbonization
收稿日期: 2014-06-09     
基金资助:* 安徽省高校重点项目KJ2012A261、安徽省自然科学基金项目1208085MB33和国家级大学生创新创业训练计划项目201310375021资助。
图1  BF在不同固含量PR中的吸收率
图2  PR, BF以及(25%)PR-BF的FTIR图
图3  PR, BF和PR-BF的TG图
图4  PR, BF以及不同固含量PR的PR-BF的DTG图
图5  (25%)PR-BF在不同温度下热处理后的FTIR图
图6  BF在不同温度下热处理后的FTIR图
图7  SEM images of BF (a) and (25%) PR-BF (b) carbonized at 600℃
1 A. Ashori,Wood-plastic composites as promising green-composites for automotive industries, Bioresource Technology, 99(11), 4661(2008)
2 CHEN Peng,KAN Ze, LIU Zhengying, FENG Jianming, YANG Mingbo, Process and properties of natural fiber reinforced anionic polyamide-6 composites, Polymer Materials Science and Engineering, 30(2), 83(2014)
2 (陈 鹏, 阚 泽, 刘正英, 冯建明, 杨鸣波, 天然纤维增强阴离子聚合尼龙6复合材料的加工与性能, 高分子材料科学与工程, 30(2), 83(2014))
3 REN Bingjie,CHEN Yuxiang, FANG Hongxia, SUN Jinyu, SHI Jianjun, WU Qianglin, Grafting modification of bamboo cellulose fiber and its composite properties, Engineering Plastics Application, 39(5), 16(2011)
3 (任兵杰, 陈宇翔, 方红霞, 孙金余, 史建俊, 吴强林, 马来酸酐接枝改性竹纤维及其增强复合材料的性能, 工程塑料应用, 39(5), 16(2011))
4 B. Ly, W. Thielemans, A. Dufresne, D. Chaussy, M. N. Belgacem,Surface functionalization of cellulose Fibers and their incorporation in renewable polymeric matrices, Composites Science and Technology, 68(15-16), 3193(2008)
5 L. Dányádi, J. Móczó, B. Pukánszky,Effect of various surface modifications of wood flour on the properties of PP/wood composites, Composites Part A: Applied Science and Manufacturing, 41(2), 199(2010)
6 M. Abdelmouleh, S. Boufi, M. N. Belgacem, A. Dufresne,Short natural-Fiber reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and Fibers loading, Composites Science and Technology, 67(7-8), 1627(2007)
7 LI Xingong,ZHENG Xia, WU Yiqiang, LI Xianjun, Thermal aging properties of bamboo fibers reinforced polylactic acid composites, Acta Material Composite Sinica, 30(5), 101(2013)
7 (李新功, 郑 霞, 吴义强, 李贤军, 竹纤维增强聚乳酸复合材料热老化性能, 复合材料学报, 30(5), 101(2013))
8 D. Kocaefe, B. Chaudhry, S. Poncsak, M. Bouazara, A. Pichette,Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties, Journal of Materials Science, 42(3), 854(2007)
9 H. X. Fang, Q. L. Wu, Y. C. Hu, Y. L. Wang, X. N. Yan,Effects of thermal treatment on durability of short bamboo-fibers and its reinforced Composites, Fibers and Polymers, 14(3), 436(2013)
10 FANG Hongxia,WU Qianglin, XI Xiaowei, WU Jifu, Preparation of lignin-based polyphenol-formaldehyde adhesive with environment-friendly property and higher performance, Journal of Fudan University (Natural Science), 48(3), 295(2009)
10 (方红霞, 吴强林, 习小威, 吴计付, 高性能环保型木质素基酚醛树脂胶粘剂的制备, 复旦学报(自然科学版), 48(3), 295(2009))
11 WANG Xiaoye,LIU Liang, FENG Zhihai, Research of phenol resin pyrolysis behavior by pyrolysis-gas chromatograph mass spectrometry, Journal of Wuhan University of Technology, 31(21), 21(2009)
11 (王晓叶, 刘 亮, 冯志海, 酚醛树脂热解性能研究, 武汉理工大学学报, 31(21), 21(2009))
12 QIN Lin,Effect of thermo-treatment on physical mechanical properties and durability of reconstituted bamboo lumber, PhD thesis (Chinese Academy of Forestry, 2010)
12 (秦 莉, 热处理对重组竹材物理力学及耐久性能影响的研究, 博士学位论文(中国林业科学院, 2010))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.