Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 821-827    DOI: 10.11901/1005.3093.2014.025
  本期目录 | 过刊浏览 |
基于弹性胶泥的新型高性能可压缩磁流变液
谢磊1,廖昌荣1(),周治江1,曾智2,黎勇2,李祝强1
1. 重庆大学光电技术及系统教育部重点实验室 重庆 400044
2. 株洲时代新材料科技股份有限公司 株洲 412007
Novel High Performance Compressible Magneto-rheological Fluids Based on Elastic Cement
Lei XIE1,Changrong LIAO1,**(),Zhijiang ZHOU1,Zhi ZENG2,Yong LI2,Zhuqiang LI1
1. Key Lab. of Opto-electronic Technology & Systems, Ministry of Education, Chongqing University,Chongqing, 400044
2. Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou, 412007
引用本文:

谢磊,廖昌荣,周治江,曾智,黎勇,李祝强. 基于弹性胶泥的新型高性能可压缩磁流变液[J]. 材料研究学报, 2014, 28(11): 821-827.
Lei XIE, Changrong LIAO, Zhijiang ZHOU, Zhi ZENG, Yong LI, Zhuqiang LI. Novel High Performance Compressible Magneto-rheological Fluids Based on Elastic Cement[J]. Chinese Journal of Materials Research, 2014, 28(11): 821-827.

全文: PDF(2235 KB)   HTML
摘要: 

使用基于高粘度(≥200 Pas)线性聚硅氧烷的弹性胶泥作为磁流变液的载体液, 研制了一类主要用于重型设备减振的新型磁流变材料——磁流变弹性胶泥。合成了三种粘度的弹性胶泥, 并制备了相应的磁流变弹性胶泥样品。用傅立叶变换红外光谱技术对弹性胶泥样品进行了检测, 并研究了磁流变弹性胶泥的可压缩性。结果表明, 所研制的磁流变弹性胶泥在30 d观测期内无明显沉降, 表现出优异的磁流变效应(磁通密度为0.54 T时基于800 Pas, 60%质量分数样品的剪切屈服应力约为120 kPa, 零场时的15.4倍, 甚至在高磁场下超过了流变化的初测试极限)。在流变曲线上首次发现一种特殊的“V形槽磁流变效应”, 从弹性胶泥特殊螺旋高分子链结构角度分析了其机理及其对磁流变弹性胶泥性能的影响。

关键词 有机高分子材料流变弹性胶泥抗沉降可压缩磁流变液弹性胶泥    
Abstract

A novel magneto-rheological (MR) material, i.e. MR elasticity cement (MREC), was proposed specific for vibration reduction of heavy equipments. High viscosity (≥200 Pas) polysiloxanes based elasticity cement (EC) was used as the carrier of Magneto-rheological fluid (MRF). Three MRECs were prepared from ECs with different viscosities. The prepared EC samples were characterized by an ATR-FTIR spectroscopy. The compressibility of MREC was also tested. The results show that no precipitation could be observed for the prepared MREC after 30 d storage; the MREC exhibited strong MR effect (shear stress of 800 Pas and 60% mass fraction based sample is about 120 kPa in a magnetic field of 0.54T, i.e. 15.4 times the off-state value, and even exceeds the shear stress limit of the rheometer under high magnetic field). Besides, a unique “V-slot MR effect” was first time found. The special helical molecule structure of EC was considered to be responsible for this effect and the unique performance of MRECs.

Key wordsorganic polymer materials, magneto-rheological elasticity cement    anti-settling    compressibility    MR fluid    elasticity cement
收稿日期: 2014-04-25     
基金资助:* 国家科技支撑计划2012BAF06B04, 中央高校基本科研业务费CDJZR13120049, 重庆市基础与前沿研究计划CSTC2013JJB 60001和国家留学基金201306050092资助项目。
图1  磁流变弹性胶泥沉降的实验观察
图2  零场下磁流变弹性胶泥的光学显微镜观测图
图3  弹性胶泥(200-0%)的全反射傅立叶红外光谱图
图4  磁流变弹性胶泥微观结构示意图
图5  磁流变弹性胶泥(800-%s)的剪应力与磁场间关系
图6  磁流变弹性胶泥(500-60%)的流变曲线
图7  弹性胶泥(500-0%)与磁流变弹性胶泥(500-20%)的体积压缩曲线
1 J. Rabinow,The magnetic fluid clutch, AIEE Transactions, 67(12), 1167(1948)
2 O. Ashour, C. A. Rogers, W. Kordonsky,Magnetorheological fluids: materials, characterization and devices, Journal of Intelligent Material Systems and Structures, 7(2), 123(1996)
3 J. M. Ginder,Behavior of Magnetorheological Fluids, MRS Bulletin, 23(08), 26(1998)
4 G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, S. H. Yeo,MR damper and its application for semi-active control of vehicle suspension system, Industrial and Commercial Applications of Smart Structures Technologies, Mechatronics, 2(7), 963(2002)
5 Y. L. Xu, W. L. Qu, J. M. Ko,Seismic response control of frame structures using magnetorheological/ electrorheological dampers, Earthquake Engineering and Structural Dynamics, 29(5), 557(2000)
6 S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. J. Hogan, P. Dumans,in Proceedings of International Society for Optics and Photonics 3782, Optical Manufacturing and Testing III, Details of the polishing spot in magnetorheological finishing, edited by H. P. Stahl(Colombia, USA, SPIE Digital Library, 1999), p.92
7 T. Saito, H. Lkeda,Development of normally closed type of magnetorheological clutch and its application to safe torque control system of human-collaborative robot, Journal of Intelligent Material Systems and Structures, 18(12), 1181(2007)
8 L. S. Chen, D. Y. Chen,Permalloy inductor based instrument that measures the sedimentation constant of magnetorheological fluids, Review of Scientific Instruments, 74(7), 3566(2003)
9 H. Sahin,Theoretical and experimental studies of magnetorheological (MR) fluids and mR greases/gels: fom rheology to system application, PhD Thesis, University of Nevada(2008)
10 K. D. Weiss, D. A. Nixon, D. J. Carlson, A. J. Margida,Thixotropic magnetorheological materials, US patent, 5645752A(2007)
11 M. J. Wilson, A. Fuchs, F. Gordaninejad,Development and characterization of magnetorheological polymer gels, Journal of Applied Polymer Science, 84(14), 2733(2002)
12 J. Sutrisno, A. Fuchs, H. Sahin, F. Gordaninejad,Surface coated iron particles via atom transfer radical polymerization for thermal–oxidatively stable high viscosity magnetorheological fluid, Journal of Applied Polymer Science, 128(1), 470(2013)
13 YOU Shiping,ZENG Dechang, YOU Shihui, Preparation and performance of practically magnetorheological Rubbers, Chinese Journal of Materials Research, 26(2), 181(2012)
13 (游仕平, 曾德长, 游世辉, 实用型磁敏橡胶的制备和力学性能, 材料研究学报, 26(2), 181(2012))
14 A. Fuchs, A. S. Rashid, Y. M. Liu, B. Kavlicoglu, H. Sahin, F. Gordaninejad,Compressible magnetorheological fuids, Journal of Applied Polymer Science, 115(6), 3348(2010)
15 G. Q. Zhou, J. F. Gao, Z. Z. Sun,Research progress on characteristics of elastic rubber and its buffer, Silicone Material, 25(1), 40(2011)
16 SHEN Daqing,A shock absorber using elastic gel, China patent, 200520071937.4(2006)
16 (沈大庆, 弹性胶泥缓冲器, 中国专利, ZL200520071937.4(2006))
17 LIU Hongliang,Research on the characteristic of elastomer bumper and its test method, Master Thesis, Zhejiang University(2010)
17 (刘洪亮, 胶泥缓冲器特性及其检测方法研究, 硕士学位论文, 浙江大学(2010))
18 LIU Fenggang,MAO Congqiang, CHEN Kai, SONG Guowen, FENG Guojiang, ZHANG Sudong, ZHANG Daqing, YANG Xiangjian, JIA Xuezhen, FEI Longren, JIN Xihong, WANG Jin,Coupler and Draft Gears for Locomotives, Industrial Standard of Ministry of Railways, TB/T 3334(2013)
18 (刘凤刚, 毛从强, 陈 凯, 宋国文, 冯国江, 张苏东, 张大清, 杨相健, 贾学真, 费龙仁, 金希红, 王 进, 机车车钩缓冲装置, 中国铁道部标准, TB/T 3334-2013(2013))
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.