Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 828-834    DOI: 10.11901/1005.3093.2014.195
  本期目录 | 过刊浏览 |
1470 MPa级双相钢的性能特征与强韧化机制
赵征志1,2(),佟婷婷1,2,赵爱民1,2,苏岚1,2,张岩1,2
1. 北京科技大学冶金工程研究院 北京 100083
2. 现代交通先进金属材料与加工技术北京实验室 北京 100083
Mechanical Properties and Strengthen-toughening Mechanism of 1470 MPa Grade Dual-phase Steel
Zhengzhi ZHAO1,2,**(),Tingting TONG1,2,ZHAOAiminsup1,2,Lan SU1,2,Yan ZHANG1,2
1. Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2. Beijing Laboratory of Modern Traffic Metal Materials and Processing Technology, Beijing 100083
引用本文:

赵征志,佟婷婷,赵爱民,苏岚,张岩. 1470 MPa级双相钢的性能特征与强韧化机制[J]. 材料研究学报, 2014, 28(11): 828-834.
Zhengzhi ZHAO, Tingting TONG, Lan SU, Yan ZHANG, . Mechanical Properties and Strengthen-toughening Mechanism of 1470 MPa Grade Dual-phase Steel[J]. Chinese Journal of Materials Research, 2014, 28(11): 828-834.

全文: PDF(6011 KB)   HTML
摘要: 

对0.16C-1.38Si-3.2Mn双相钢进行轧制和退火处理, 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)等手段表征试验钢的微观组织和断口形貌, 分析试验钢经退火后钢板的力学性能和加工硬化行为, 重点研究了试验钢晶粒细化的强韧化机制。结果表明: 试验钢在800℃退火后的显微组织主要由8.8%铁素体和91.2%回火马氏体构成。退火后的钢板具有良好的综合力学性能, 屈服强度为873 MPa, 表现为连续屈服特征, 抗拉强度为1483 MPa, 总伸长率为11%, 屈强比为0.58; 试验钢的Mn含量、退火前的初始组织、冷轧大变形以及退火过程中关键工艺参数等都有利于试验钢退火板的晶粒细化, 铁素体尺寸为1-2 μm, 马氏体板条束的有效晶粒尺寸为0.2-1.5 μm。细小的晶粒有利于阻碍位错的运动和增加裂纹扩展的阻力, 从而提高了钢板的强度和塑韧性。

关键词 金属材料超高强双相钢细晶强韧化机制加工硬化行为    
Abstract

Plates of 1.5 mm in thickness of a model dual-phase steel 0.16C-1.38Si-3.2Mn was prepared by complex processes of rolling and annealing. The mechanical property and work hardening behavior of the steel after annealing were examined. The microstructure and fracture morphology of the steel were characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) techniques with emphasis on the strengthen-toughening mechanism of grain refinement of the steel. The results show that the microstructure of the steel annealed at 800℃ consists of ferrite (8.8%) and tempered martensite (91.2%). The annealed steel exhibits good comprehensive performance: the yield strength of 873 MPa with characteristics of continuous yield, tensile strength of 1483 MPa, total elongation of 11% and yield ratio of 0.58. The factors such as the manganese content of the steel, the initial microstructure before annealing, the large deformation of cold rolling and the key parameters of annealing process are all conductive to the grain refining of the steel, as a result the size of ferrite phases is about 1-2 μm and the effective size of martensite bundles is 0.2-1.5 μm. The refined grains may play an important role in blocking the movement of dislocation and increase the resistance to crack propagation thereby enhance the strength, toughness and ductility of the steel sheet.

Key wordsmetallic materials    ultra-high strength dual-phase steel    grain refinement    strengthen-toughening mechanism    work hardening behavior
收稿日期: 2014-04-16     
基金资助:* 国家自然科学基金51271035项目资助。
图1  试验钢制备工艺路线
图2  试验钢退火板的SEM像
图3  试验钢退火板的TEM像
图4  试验钢退火板的应力-应变曲线
图5  试验钢拉伸后断口形貌
图6  试验钢退火板板的瞬时n值和加工硬化速率
图7  试验钢加工硬化行为改进C-J方法分析结果
图8  试验钢退火板的晶粒分布情况
图9  试验钢退火板马氏体板条束有效晶粒尺寸统计
图10  试验钢显微组织(SEM) (a) 热轧 (b) 冷轧
图11  试验钢退火板菊池线质量图
1 D. K. Matlock, J. G. Speer,Processing opportunities for new advanced high-strength sheet steels, Materials and Manufacturing Processes, 25(1-3), 7(2010)
2 T. G. Langdon,Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement, Acta Materialia, 61(19), 7035(2013)
3 J. Hu, L. X. Du, H. Xie, P. Yu, R. D. K. Misra,A nanograined/ultrafine-grained low-carbon microalloyed steel processed by warm rolling, Materials Science and Engineering: A, 605, 186(2014)
4 H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, Y. Tanaka,Effects of auto-tempering behaviour of martensite on mechanical properties of ultra high strength steel sheets, Journal of Alloys and Compounds, 577(S1), 661(2013)
5 G. Rosenberg, I. Sinaiová, L. Juhar,Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators, Materials Science & Engineering A, 582, 347(2013)
6 LI Hongying,Fracture analysis of the metal tensile specimen, Journal of Shanxi Datong University (Natural Science), 27(1), 76(2011)
6 (李红英, 金属拉伸试样的断口分析, 山西大同大学学报: 自然科学版, 27(1), 76(2011))
7 M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe,Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Materialia, 59(2), 658(2011)
8 N. Saeidi, F. Ashrafizadeh, B. Niroumand,Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior, Materials Science & Engineering A, 599, 145(2014)
9 LI Yulan,Definition and mechanical characteristics of true stress-strain, Journal of Chongqing University (Natural Science Edition), 24(3), 58(2001)
9 (李玉兰, 真应力-应变的定义及其力学特征, 重庆大学学报: 自然科学版, 24(3), 58(2001))
10 V. Colla, M. D. Sanctis, A. Dimatteo, G. Lovicu, A. Solina, R. Valentini,Strain hardening behavior of dual-phase steels, Metallurgical and Materials Transactions A, 40(11), 2557(2009)
11 NIE Wenjin,SHANG Chengjia, GUAN Hailong, ZHANG Xiaobing, CHEN Shaohui, Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior, Acta Metallurgica Sinica, 48(3), 298(2012)
11 (聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧,铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析, 金属学报, 48(3), 298(2012))
12 WEI Xing,FU Limig, LIU Shicang, WANG Wei, SHAN Aidang, Deformation behavior of constituent phases and the affected factors in dual-phase steel, Chinese Journal of Materials Research, 27(6), 665(2013)
12 (魏 兴, 付立铭, 刘世昌, 王 巍, 单爱党, 双相钢组成相的变形行为及其影响因素, 材料研究学报, 27(6), 665(2013))
13 H. Seyedrezai, A. K. Pilkey, J. D. Boyd,Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel, Materials Science & Engineering A, 594, 178(2014)
14 HOU Xiaoying,XV Yunbo, WU Di, Microstructure and mechanical properties of 980 MPa grade hot rolled V-microalloyed TRIP steel, Chinese Journal of Materials Research, 25(2), 158(2011)
14 (侯晓英, 许云波, 吴 迪, 热轧钒微合金TRIP钢的微观组织和力学性能, 材料研究学报, 25(2), 158(2011))
15 LAN Huifang, W. J. Liu,LIU Xianghua, Ultrafine grained steels produced by tempering cold rolled martensite and their thermal stability, Chinese Journal of Materials Research, 22(3), 279(2008)
15 (蓝慧芳, W. J. Liu,刘相华, 马氏体冷轧-回火制备超细晶钢及其热稳定性, 材料研究学报, 22(3), 279(2008))
16 Y. Okitsu, N. Takata, N. Tsuji,A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation, Scripta Materialia, 60(2), 76(2009)
17 DAI. Qifeng,SONG Renbo, FAN Wuyan, GUO Zhifei, GUAN Xiaoxia, Behaviour and mechanism of strain hardening for dual phase steel DP 1180 under high strain rate deformation, Acta Metallurgica Sinica, 48(10), 1160(2012)
17 (代启锋, 宋仁伯, 范午言, 郭志飞, 关小霞, DP1180双相钢在高应变速率变形条件下应变硬化行为及机制, 金属学报, 48(10), 1160(2012))
18 ZHAIO Xianmeng,KANG Yonglin, HAN Qihang, Austenite isochronal transformation kinetics of 1000 MPa cold rolled dual phase steel, Journal of University of Science and Technology Beijing, 35(2), 195(2013)
18 (赵显蒙, 康永林, 韩启航, 1000 MPa级冷轧双相钢奥氏体的等时相变动力学, 北京科技大学学报, 35(2), 195(2013))
19 R. Ueji, N. Tsuji b, Y. Minamino, Y. Koizumi,Ultragrain refinement of plain low carbon steel by cold rolling and annealing of martensite, Acta Materialia, 50, 4177(2002)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.