Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (3): 312-316    
  研究论文 本期目录 | 过刊浏览 |
TiC0.81N0.48和TiC0.61N0.44O0.15涂层的热稳定性能*
朱丽慧1 张雨萌1 彭 笑1 Peter Leicht 2 刘一雄2
1. 上海大学材料科学与工程学院 上海 200072
2. 美国肯纳金属公司 宾夕法尼亚州 拉特罗布 15650
Thermal Stability of TiC0.81N0.48 and TiC0.61N0.44O0.15 Coatings
ZHU Lihui1** ZHANG Yumeng 1 PENG Xiao1 Peter Leicht 2 LIU Yixiong 2
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2. Kennametal Inc., Latrobe, PA 15650, USA
引用本文:

朱丽慧, 张雨萌, 彭笑, Peter Leicht , 刘一雄. TiC0.81N0.48和TiC0.61N0.44O0.15涂层的热稳定性能*[J]. 材料研究学报, 2013, 27(3): 312-316.
. Thermal Stability of TiC0.81N0.48 and TiC0.61N0.44O0.15 Coatings[J]. Chinese Journal of Materials Research, 2013, 27(3): 312-316.

全文: PDF(848 KB)  
摘要: 用中温化学气相沉积工艺制备TiC0.81N0.48和TiC0.61N0.44O0.15涂层, 用显微维氏硬度计测定TiCN和TiCNO涂层的硬度, 用X射线衍射仪和激光拉曼光谱仪分析涂层的结构, 研究了TiCN和TiCNO涂层在700℃真空退火后的组织结构转变对硬度的影响。结果表明: 真空退火后TiC0.81N0.48和TiC0.61N0.44O0.15涂层的硬度先下降, 然后趋于稳定。TiC0.81N0.48和TiC0.61N0.44O0.15涂层在700 ℃真空退火时, C原子从TiCN晶格析出后先形成sp3C; 随着退火时间的延长, sp3C逐渐向sp2C转变; 随后sp2C团簇增加, 无序程度降低, TiCN逐渐分解为TiC和TiN相。硬度的降低, 是由于涂层内缺陷密度的减少使应力释放, 还与高温下TiC0.81N0.48和TiC0.61N0.44O0.15涂层组织结构的转变, 特别是sp3C和sp2C的形成有关。与TiC0.61N0.44O0.15涂层相比, 在700℃真空退火时TiC0.81N0.48涂层组织转变的进程加快, 热稳定性能较差。
关键词 材料失效与保护TiCN涂层热稳定性相转变硬度    
Abstract:TiC0.81N0.48 coating and TiC0.61N0.44O0.15 coating deposited by medium temperature chemical vapor deposition, were characterized by Vickers hardness tester, X-ray diffraction (XRD) and confocal Raman spectrometer, and the effect of microstructure transformation on the hardness was investigated. Results show that the hardness of TiC0.81N0.48 and TiC0.61N0.44O0.15 coatings declines after annealing at 700 ℃ in vacuum, and then tends to be stable. At the beginning of the annealing, some C atoms escape from the lattice of TiCN, resulting in the formation of sp3C. As the annealing time prolongs, sp3C transforms to sp2C gradually. Thereafter the clustering of sp2C increases, the disorder degree decreases, and TiCN decomposes into TiC and TiN. The decrease of hardness is related with the release of residual stress due to the defect annihilation. Besides, the microstructure transformation especially the formation of sp3C and sp2C decreases the hardness of coatings. Compared with TiC0.61N0.44O0.15, the microstructure transformation takes places earlier in TiC0.81N0.48 coating, which exhibits worse thermal stability.
Key wordsmaterials failure and protection    TiCN coatings    thermal stability    microstructure transformation    hardness
收稿日期: 2013-03-11     
ZTFLH:  TG174  
基金资助:* 美国肯纳公司资助项目
1 T. Sadahiro, S. Yamaya, K. Shibuki, N. Ujiie, Wear resistant coating of cemented carbides and high speed steels by chemical vapour deposition, Wear, 48, 291(1978)
2 S. Ruppi, A. Larsson, Deposition, microstructure, and properties of nanocrystalline Ti(C, O, N) coatings, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 21(1), 66(2003)
3 J. H. Hsieh, C. Li, W. Wu, A. L. K. Tan, Synthesis of Ti(C, N, O) coatings by unbalanced magnetron sputtering, Journal of Materials Processing Technology, 140(1-3), 662(2003)
4 Cacilda Moura, Luís Cunha, Jean Marie Chappé, Filipe Vaz, Study on the thermal stability of Ti(C, O, N) decorative coatings, Plasma Processes and Polymers, 6, s755(2009)
5 C. Olteanu, D. Munteanu, C. Ionescu, A. Munteanu, Tribological characterisation of magnetron sputtered Ti(C, O, N) thin films, International Journal of Materials and Product Technology, 39, 186 (2010)
6 Czettl C, Mitterer C, Mühle U, Rafaja D, Puchner S, Hutter H, M. Penoy, C. Michotte, M. Kathrein, CO addition in low-pressure chemical vapour deposition of medium-temperature TiCxN1-x based hard coatings, Surface & Coatings Technology, 206, 1691(2011)
7 Y. H. Lu, Y. G. Shen, Effect of carbon content on thermal stability of Ti-Cx-Ny thin films, Journal of Materials Research, 23(3), 671 (2008)
8 L. Karlsson, A. H?rling, M.P. Johansson, L. Hultman, G. Ramanath, The influence of thermal annealing on residual stresses and mechanical properties of arc-evaporated TiCxN1-x (x=0, 0.15 and 0.45) thin films, Acta Materialia, 50, 5103(2002)
9 J. M. Chappé, F. Vaz, L. Cunha, C. Moura, Lucas de Marco MC, L. Imhoff, S. Bourgeois, J. F. Pierson, Development of dark Ti(C, O, N) coatings prepared by reactive sputtering, Surface and Coatings Technology, 203(5-7), 804(2008)
10 J. Wasyluk, T. S. Perova, D. W. M. Lau, M. B. Taylor, D. G. McCulloch, J. Stopford, Ultraviolet and visible Raman analysis of thin a-C films grown by filtered cathodic arc deposition, Diamond & Related Materials, 19, 514(2010)
11 ZHANG Yumeng, ZHU Lihui, BAN Zhigang, LIU Yixiong, Effect of oxygen addition on the microstructure and properties of TiCN coating deposited by chemical vapor deposition, Cemented Carbide, 29(2), 66(2012)
(张雨萌, 朱丽慧, 班志刚, 刘一雄, 氧的掺入对化学气相沉积TiCN涂层的影响, 硬质合金, 29(2), 66(2012))
12 J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S. R. P. Silva, Raman spectroscopy on amorphous carbon films, Journal of Applied Physics, 80(1), 440(1996)
13 Fan-Xin Liu, Kai-Lun Yao, Zu-Li Liu, Substrate tilting effect on structure of tetrahedral amorphous carbon films by Raman spectroscopy, Surface & Coatings Technology, 201, 7235(2007)
[1] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[6] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] 张钧, 彭立静, 王宇, 王晓阳, 王楠, 王美涵. Al/Ti摩尔比对(CrTiAl)N硬质膜相结构和硬度的影响[J]. 材料研究学报, 2022, 36(1): 55-61.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 李刚, 温影, 于中民, 刘囝, 熊梓连. Al含量对CrFeNiAlxSi系高熵合金性能的影响[J]. 材料研究学报, 2021, 35(9): 712-720.
[10] 李宁宁, 陈旸, 陈希, 殷利迎, 陈光. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582.
[11] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.
[14] 徐春萍, 陈春悦, 张永航, 龚维, 班大明. 含磷聚合物型阻燃剂(PMP)对乙烯基酯树脂(VER)的阻燃改性[J]. 材料研究学报, 2021, 35(11): 843-849.
[15] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.