Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 321-331    DOI: 10.11901/1005.3093.2021.599
  综述 本期目录 | 过刊浏览 |
晶界偏析以及界面相和纳米晶材料力学性能的调控
姜水淼1,2, 明开胜1,2, 郑士建1,2()
1.河北工业大学材料科学与工程学院 天津 300401
2.天津市材料层状复合与界面控制技术重点实验室 天津 300401
A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials
JIANG Shuimiao1,2, MING Kaisheng1,2, ZHENG Shijian1,2()
1.School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300401, China
引用本文:

姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
Shuimiao JIANG, Kaisheng MING, Shijian ZHENG. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. Chinese Journal of Materials Research, 2023, 37(5): 321-331.

全文: PDF(11006 KB)   HTML
摘要: 

介绍晶界偏析理论并总结了三种经典平衡偏析理论模型,简述晶界偏析工程理论和晶界偏析对材料力学性能的影响、讨论晶界偏析与界面相的关系并详细阐述了“界面相”。根据原子尺度界面结构特征将界面相分为六类,介绍了由晶界热力学决定的界面相转变。界面相转变后在晶界处形成新结构,而新界面结构根据其不同性质既可能提高材料性能,也可能产生不利的影响。晶界处的Ⅵ型界面相(如非晶晶间膜)抑制裂纹形核和降低晶界损伤,而削弱晶界处原子键强度的Ⅱ型界面相和Ⅲ型界面相(如Ni合金晶界处成分为Bi的双原子层界面相)产生晶界脆化。同时,纳米晶金属材料的强度高但是热稳定性和塑性较差,一直是研究的热点。界面相使晶界能显著降低和钉扎晶界而优于晶界偏析,因此界面相能显著提高纳米晶金属材料的热稳定性。而非晶晶间膜(Ⅵ型界面相)作为位错的形核点和吸收体,可提高纳米材料的延展性。同时,非晶晶间膜能提高晶界抗剪切能力,抑制纳米晶金属材料的晶粒滑动和旋转,从而进一步提高纳米晶金属材料的强塑性。最后,总结了晶界偏析和界面相对材料性能的调控并展望了以后的发展。

关键词 评述材料科学基础学科晶界偏析界面相纳米晶金属材料热稳定性力学性能    
Abstract

The theory of grain boundary segregation was introduced, and three classical models of equilibrium segregation were summarized, while the theory related with grain boundary segregation engineering and the influence of grain boundary segregation on mechanical properties of materials were also briefly introduced. The relationship between grain boundary segregation and interface phase was discussed. The interfacial phases can be divided into six types according to the structural characteristics of interfaces in atomic scale, and the interfacial phase transitions determined by grain boundary thermodynamics were introduced. The interfacial phase transformation leads to the formation of new structures at grain boundaries, which may either improve the properties of materials or have adverse effects on them. The type VI interfacial phase at grain boundary (such as amorphous intergranular film) inhibits the nucleation of crack and reduces the damage of grain boundary, however, the type II and type III interfacial phases that weaken the atomic bond strength at the grain boundary (such as the bi-atomic interfacial phase at the grain boundary of Ni alloy with Bi component) produce grain boundary embrittlement. At the same time, nanocrystalline metal materials have high strength but poor thermal stability and plasticity, which has always been the focus of research. The interfacial phase can significantly reduce grain boundary energy and pin grain boundaries rather than segregates at grain boundaries. Therefore, the interfacial phase can significantly improve the thermal stability of nanocrystalline metallic materials. As the sites for nucleation and absorption of dislocations, the amorphous intercrystalline film (VI interface phase) can improve the ductility of nanomaterials. Whilst, amorphous intercrystalline films can improve the shear resistance of grain boundaries and inhibit grain sliding and rotation of nanocrystalline metallic materials, thus further improving the plasticity of nanocrystalline metallic materials. Finally, the effects of grain boundary segregation and interface on material properties were also summarized and the future development was prospected.

Key wordsreview    foundational discipline in materials science    grain boundary segregation    complexion    thermal stability    mechanical properties
收稿日期: 2021-10-22     
ZTFLH:  TB331  
基金资助:国家自然科学基金(51771201);国家自然科学基金(52071124);河北省自然科学基金(E2021202135);天津市自然科学基金(20JCZDJC00440);东北大学轧制技术与连轧自动化国家重点实验室开发课题(2020RALKFKT002)
作者简介: 姜水淼,男,1996年生,硕士生
图1  Dillon-Hammer六种界面相的实例和模型[17, 21, 26, 27]
图2  晶界过量自由能γ与温度和压力的关系图[28]
图3  Cu-Zr合金中不同的晶界结构对位错发射和滑移的影响[34]
图4  引入不同界面相以提高纳米结构材料的界面稳定性 [39, 40]
图5  用J积分方法得到的不同掺杂Al2O3样品的Keff(断裂时的有效应力强度因子)分布[41]
图6  Cu-Zr合金剪切变形过程中模拟裂纹的成核和扩展[44]
图7  镍晶界富Bi双原子层界面相的微观结构[17]
图8  具有不同界面相的Cu-Zr合金压缩后的变形行为[35]
图9  恒定驱动力下的晶界运动[16]
图10  BaTiO3界面的原子结构[47]
图11  Ni-W合金界面相的表征和在不同温度的晶粒尺寸分布[54]
1 Lejček P, Hofmann S, Paidar V. Solute segregation and classification of [100] tilt grain boundaries in α-iron: Consequences for grain boundary engineering [J]. Acta Mater., 2003, 51(13): 395
2 Millett P C, Selvam R P, Saxena A. Stabilizing nanocrystalline materials with dopants [J]. Acta Mater., 2007, 55(7): 2329
doi: 10.1016/j.actamat.2006.11.028
3 Hondros E D. The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron [J]. Proc. Roy. Soc. Lond., 1965, 286A(1407) : 479
4 Wynblatt P, Chatain D. Anisotropy of segregation at grain boundaries and surfaces [J]. Metall. Mater. Trans., 2007, 38A(9) : 438
5 Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50(2): 413
doi: 10.1016/S1359-6454(01)00338-X
6 Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background [J]. Acta Mater., 2007, 55(15): 5129
doi: 10.1016/j.actamat.2007.05.047
7 Tang M, Carter W C, Cannon R M. Diffuse interface model for structural transitions of grain boundaries [J]. Phys. Rev., 2006, 73B(2) : 024102
8 McLean D, Maradudin A. Grain boundaries in metals [J]. Phys. Today, 1958, 11(7): 35
9 Lejček P, Schneeweiss O. Solute segregation at ordered grain boundaries [J]. Surf. Sci., 2001, 487(1-3): 210
doi: 10.1016/S0039-6028(01)01100-1
10 Kikuchi R, Cahn J W. Grain boundaries with impurities in a two-dimensional lattice-gas model [J]. Phys. Rev., 1987, 36B(1) : 418
11 Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling [J]. Acta Mater., 2009, 57(13): 3771
doi: 10.1016/j.actamat.2009.04.044
12 Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47(15-16): 4171
doi: 10.1016/S1359-6454(99)00275-X
13 Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
doi: 10.1016/j.cossms.2014.06.002
14 Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40(9): 1361
doi: 10.1021/ja02242a004
15 Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20(1): 1
doi: 10.1080/10408439508243544
16 Molodov D A, Czubayko U, Gottstein G, et al. Acceleration of grain boundary motion in Al by small additions of Ga [J]. Philos. Mag. Lett., 1995, 72(6): 361
doi: 10.1080/09500839508242475
17 Luo J, Cheng H K, Asl K M, et al. The role of a bilayer interfacial phase on liquid metal embrittlement [J]. Science, 2011, 333(6050): 1730
doi: 10.1126/science.1208774 pmid: 21940889
18 Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
doi: 10.1016/j.actamat.2016.08.048
19 Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61(16): 6132
doi: 10.1016/j.actamat.2013.06.055
20 Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265(5170): 376
pmid: 17838041
21 Duscher G, Chisholm M F, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries [J]. Nat. Mater., 2004, 3(9): 621
pmid: 15322533
22 Buban J P, Mizoguchi T, Shibata N, et al. Zr segregation and associated Al vacancies in alumina grain boundaries [J]. J. Ceram. Soc. Jpn., 2011, 119(1395): 840
doi: 10.2109/jcersj2.119.840
23 Chen C L, Lv S H, Wang Z C, et al. Oxygen segregation at coherent grain boundaries of cubic boron nitride [J]. Appl. Phys. Lett., 2013, 102(9): 091607
24 Wang Z C, Saito M, McKenna K P, et al. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries [J]. Nature, 2011, 479(7373): 380
doi: 10.1038/nature10593
25 Turlo V, Rupert T J. Dislocation-assisted linear complexion formation driven by segregation [J]. Scr. Mater., 2018, 154: 25
doi: 10.1016/j.scriptamat.2018.05.014
26 Sigle W, Richter G, Rühle M, et al. Insight into the atomic-scale mechanism of liquid metal embrittlement [J]. Appl. Phys. Lett., 2006, 89(12): 121911
doi: 10.1063/1.2356322
27 Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo [J]. Appl. Phys. Lett., 2009, 94(25): 251908
doi: 10.1063/1.3155443
28 Cantwell P R, Frolov T, Rupert T J, et al. Grain boundary complexion transitions [J]. Annu. Rev. Mater. Res., 2020, 50: 465
doi: 10.1146/matsci.2020.50.issue-1
29 Luo J, Shi X M. Grain boundary disordering in binary alloys [J]. Appl. Phys. Lett., 2008, 92(10): 101901
doi: 10.1063/1.2892631
30 Luo J. Current opinion in solid state [J]. Mater. Sci., 2008, 12: 81
31 Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations [J]. Science, 2015, 349(6252): 1080
doi: 10.1126/science.aab2633 pmid: 26339026
32 Lei T J, Shin J, Gianola D S, et al. Bulk nanocrystalline Al alloys with hierarchical reinforcement structures Via grain boundary segregation and complexion formation [J]. Acta Mater., 2021, 221: 117394
doi: 10.1016/j.actamat.2021.117394
33 Turlo V, Rupert T J. Interdependent linear complexion structure and dislocation mechanics in Fe-Ni [J]. Crystals, 2020, 10(12): 1128
doi: 10.3390/cryst10121128
34 Turlo V, Rupert T J. Grain boundary complexions and the strength of nanocrystalline metals: Dislocation emission and propagation [J]. Acta Mater., 2018, 151: 100
doi: 10.1016/j.actamat.2018.03.055
35 Khalajhedayati A, Pan Z L, Rupert T J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility [J]. Nat. Commun., 2016, 7(1): 10802
doi: 10.1038/ncomms10802
36 Chen B, Zhu L L, Xin Y C, et al. Grain rotation in plastic deformation [J]. Quantum Beam Sci., 2019, 3(3): 17
doi: 10.3390/qubs3030017
37 Naik S N, Walley S M. The hall–petch and inverse hall-petch relations and the hardness of nanocrystalline metals [J]. J. Mater. Sci., 2020, 55(7): 2661
doi: 10.1007/s10853-019-04160-w
38 Tang F, Gianola D S, Moody M P, et al. Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour [J]. Acta Mater., 2012, 60(3): 1038
doi: 10.1016/j.actamat.2011.10.061
39 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355(6331): 1292
doi: 10.1126/science.aal5166 pmid: 28336664
40 Yang W F, Gong M Y, Yao J H, et al. Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers [J]. Scr. Mater., 2021, 200: 113917
doi: 10.1016/j.scriptamat.2021.113917
41 Feng L, Hao R, Lambros J, et al. The influence of dopants and complexion transitions on grain boundary fracture in alumina [J]. Acta Mater., 2018, 142: 121
doi: 10.1016/j.actamat.2017.09.002
42 Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53(11): 3115
doi: 10.1016/j.actamat.2005.02.012
43 Schuler J D, Barr C M, Heckman N M, et al. In situ high-cycle fatigue reveals importance of grain boundary structure in nanocrystalline Cu-Zr [J]. JOM, 2019, 71(4): 1221
doi: 10.1007/s11837-019-03361-7
44 Pan Z L, Rupert T J. Amorphous intergranular films as toughening structural features [J]. Acta Mater., 2015, 89: 205
doi: 10.1016/j.actamat.2015.02.012
45 Balbus G H, Wang F L, Gianola D S. Suppression of shear localization in nanocrystalline Al-Ni-Ce Via segregation engineering [J]. Acta Mater., 2020, 188: 63
doi: 10.1016/j.actamat.2020.01.041
46 Wang Y M, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(27): 11155
pmid: 17592136
47 Zheng S J, Ma X L, Yamamoto T, et al. Atomistic study of abnormal grain growth structure in BaTiO3 by transmission electron microscopy and scanning transmission electron microscopy [J]. Acta Mater., 2013, 61(7): 2298
doi: 10.1016/j.actamat.2012.12.046
48 Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3(1-6): 261
doi: 10.1016/0965-9773(93)90088-S
49 Khalajhedayati A, Rupert T J. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy [J]. JOM, 2015, 67(12): 2788
doi: 10.1007/s11837-015-1644-9
50 Ahadi A, Kalidindi A R, Sakurai J, et al. The role of W on the thermal stability of nanocrystalline nitiwx thin films [J]. Acta Mater., 2018, 142: 181
doi: 10.1016/j.actamat.2017.09.056
51 Ding J, Shang Z, Zhang Y F, et al. Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries [J]. Scr. Mater., 2020, 182: 21
doi: 10.1016/j.scriptamat.2020.02.032
52 Pan Z L, Rupert T J. Effect of grain boundary character on segregation-induced structural transitions [J]. Phys. Rev., 2016, 93B(13) : 134113
53 Grigorian C M, Rupert T J. Thick amorphous complexion formation and extreme thermal stability in ternary nanocrystalline Cu-Zr-Hf alloys [J]. Acta Mater., 2019, 179: 172
doi: 10.1016/j.actamat.2019.08.031
54 Schuler J D, Donaldson O K, Rupert T J. Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W [J]. Scr. Mater., 2018, 154: 49
doi: 10.1016/j.scriptamat.2018.05.023
55 Balbus G H, Kappacher J, Sprouster D J, et al. Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy [J]. Acta Mater., 2021, 215: 116973
doi: 10.1016/j.actamat.2021.116973
62 Lejček P, translated by Zheng L, Wang M Q. Grain Boundary Segregation in Metals [M]. Beijing: Tsinghua University Press, 2020: 41
62 Lejček P著, 郑 磊, 王民庆 译. 金属中的晶界偏聚 [M]. 北京: 清华大学出版社, 2020: 41
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[6] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[7] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[9] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[14] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[15] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.