Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 572-582    DOI: 10.11901/1005.3093.2020.449
  研究论文 本期目录 | 过刊浏览 |
包埋渗铝法制备Fe-Al渗层及其扩散机制
李宁宁1,2, 陈旸2, 陈希1, 殷利迎1, 陈光2()
1.华北水利水电大学材料学院 郑州 450045
2.南京理工大学 先进金属与金属间化合物材料技术工信部重点实验室 材料评价与设计教育部工程研究中心 南京 210094
Preparation Method and Diffusion Mechanism of Fe-Al Coating on Q235 Low Carbon Steel by Pack Aluminizing
LI Ningning1,2, CHEN Yang2, CHEN Xi1, YIN Liying1, CHEN Guang2()
1.School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2.MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
引用本文:

李宁宁, 陈旸, 陈希, 殷利迎, 陈光. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582.
Ningning LI, Yang CHEN, Xi CHEN, Liying YIN, Guang CHEN. Preparation Method and Diffusion Mechanism of Fe-Al Coating on Q235 Low Carbon Steel by Pack Aluminizing[J]. Chinese Journal of Materials Research, 2021, 35(8): 572-582.

全文: PDF(9041 KB)   HTML
摘要: 

包埋渗铝法可在钢基体表面制备出一层致密、坚固、连续的Fe-Al渗层,以改善基体性能。本文在不同温度和不同时间下对Q235低碳钢进行包埋渗铝,形成Fe-Al渗层,采用X射线衍射、扫描电镜及能谱分析等方法研究了渗铝层的物相结构、表面及截面形貌和成分,采用显微硬度仪测量了截面硬度。结果表明,不同渗铝温度下获得的渗铝层,主要含有Fe2Al5和FeAl3两相,且750℃得到的渗层存在较多Fe2Al5相;随着渗铝温度升高,Fe-Al渗层厚度增加,Al原子扩散系数增大,但显微硬度降低;不同渗铝时间下制备的渗铝层,物相仍以Fe2Al5和FeAl3为主,但随着渗铝时间延长,FeAl3含量减少,且Al原子扩散系数变大,渗层显微硬度略有降低。在进一步分析Fe-Al渗层形成的热力学与动力学基础上,总结了渗铝层形成的扩散机制。

关键词 金属材料Fe-Al 渗层包埋渗铝法扩散系数显微硬度    
Abstract

The Fe-Al coating, with compactness, stiffness, and continuity, could be prepared on Q235 low carbon steel by pack aluminizing. The phase structure, morphology, composition, and hardness of the prepared coating were characterized by XRD, SEM, EDS, and micro-hardness tester respectively. Results indicate that the Fe-Al coating is composed of Fe2Al5 and FeAl3 phases, whilst, the coating fabricated at 750℃ is particularly rich in Fe2Al5 phase. With the rising temperature, the thickness of Fe-Al coating increases, whereas the micro-hardness decreases. As a result of aluminizing for different time, the formed coatings are composed of the two phases Fe2Al5 and FeAl3 as well. However, with the increasing aluminizing time, the content of FeAl3 phase decreases, while the micro-hardness of the coating decreases slightly. Finally, a diffusion mechanism related with the formation of Fe-Al coating is proposed based on the comprehensive analysis on the thermodynamics and kinetics of pack aluminizing process.

Key wordsmetallic materials    Fe-Al layer    pack aluminizing    diffusion coefficient    micro-hardness
收稿日期: 2020-10-26     
ZTFLH:  TG131  
基金资助:国家自然科学基金(51571117);华北水利水电大学高层次人才科研启动项目(4001/40680)
作者简介: 李宁宁,女,1987年生,博士
CMnSiSPFe
0.140~0.2200.300~0.650<0.300≤0.0500.045Bal.
表1  Q235低碳钢化学成分(质量分数, %)
ReagentsParticle size/μmPurity/%
Al7599
Al2O348Analytically pure
AlCl3-Analytically pure
表2  渗铝剂的粒度及纯度要求
Temperature /℃550650650650750850
Time/h201520252020
表3  包埋渗铝试验方案
图1  不同渗铝温度下制备Fe-Al渗铝层的XRD图谱
图2  不同渗铝时间下制备Fe-Al渗铝层的XRD图谱(温度为650℃)
图3  不同温度制备Fe-Al渗层的表面形貌
A1A2B1B2C1C2D1D2
Total100.00
Al4.5677.8971.9076.1971.3373.6473.2596.68
Fe95.4422.1128.1023.8128.6726.3626.753.32
表4  不同渗铝温度制备Fe-Al渗层表面的成分
图4  不同时间制备Fe-Al渗层的表面形貌(温度为650℃)
Content/%, mass fractiona1a2B1B2c1c2
Total100.00
Al73.1080.5471.9076.1972.8273.21
Fe26.9019.4628.1023.8127.1826.79
表5  不同时间制备Fe-Al渗层的表面成分
图5  550℃制备Fe-Al渗层的截面形貌和成分曲线
图6  不同温度制备Fe-Al渗层的截面形貌和成分曲线
Temperature/℃650750850
D/m2·s-14.20×10-145.01×10-139.39×10-13
表6  不同温度下Al原子的扩散系数D
图7  不同时间制备Fe-Al渗层的截面形貌和成分曲线(650℃)
Time/h152025
D/m2·s-14.09×10-144.20×10-145.76×10-14
表7  不同时间下Al原子的扩散系数D
图8  Q235钢(a)和不同温度制备Fe-Al渗层的显微硬度
图9  不同时间制备Fe-Al渗层的显微硬度(温度为650℃)
图10  不同渗铝温度和Fe-Al渗层厚度的关系曲线
图11  不同渗铝时间和Fe-Al渗层厚度的关系曲线
图12  包埋渗铝法形成Fe-Al渗层的生长意图
1 Sun Z Q, Gao D C, Yang W E, et al. Research of Fe3Al intermetallics in application to structural material [J]. Chin. J. Mater. Res., 2001, 15: 69
1 孙祖庆, 高德春, 杨王珥等. Fe3Al基合金用作结构材料的应用基础研究 [J]. 材料研究学报, 2001, 15: 69
2 Huang G Q, Zhang G K, Luo C Y, et al. A review on hydrogen embrittlement of Fe-Al intermetallics [J]. Mater. Rev., 2018, 32: 1878
2 黄广棋, 张桂凯, 罗朝以等. Fe-Al金属间化合物氢脆效应研究现状 [J]. 材料导报, 2018, 32: 1878
3 Ma Z, Li L, Dong S Z, et al. Microstructure and properties of Fe-Al intermetallic compound coating prepared by argon arc cladding [J]. Mater. Prot., 2017, 50(10): 9
3 马壮, 李玲, 董世知等. 氩弧熔覆Fe-Al金属间化合物复合涂层的组织与性能 [J]. 材料保护, 2017, 50(10): 9
4 Liao Y L, Zhang Q Y, Zhou Y, et al. Wear resistance of hot dip aluminum coating on a carbon steel [J]. Chin. J. Mater. Res., 2014, 28: 737
4 廖远禄, 张秋阳, 周银等. 碳钢热浸镀铝涂层的磨损性能 [J]. 材料研究学报, 2014, 28: 737
5 Cinca N, Cygan S, Senderowski C, et al. Sliding wear behavior of Fe-Al coatings at high temperatures [J]. Coatings, 2018, 8: 268
6 Rezaee B, Rastegari S, Eyvazjamadi H. Formation mechanism of Pt-modified aluminide coating structure by out-of-the-pack aluminizing [J]. Surf. Eng., 2020, doi: 10.1080/02670844.2020.1741212
7 Hengprayoon B, Leelachao S, Patama V. Investigation of a simultaneous silicon-modified pack aluminizing method on pure nickel using quartz and RHA [J]. Key. Eng. Mat., 2018, 775: 323
8 Huang Z J, Jiang Z Q, Dong W B, et al. High-temperature corrosion resistance of composite coating prepared by micro-arc oxidation combined with pack cementation aluminizing [J]. J. Mater. Eng., 2018, 46(1): 44
8 黄祖江, 蒋智秋, 董婉冰等. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能 [J]. 材料工程, 2018, 46(1): 44
9 Xie H, Yu L X, Ma R N, et al. A study of pack aluminizing technology on the surface of GCr15 steel [J]. J. Hebei Univ. Technol., 2017, 46(6): 57
9 谢欢, 于立新, 马瑞娜等. GCr15钢表面粉末包埋渗铝工艺研究 [J]. 河北工业大学学报, 2017, 46(6): 57
10 Majumdar S, Paul B, Kain V, et al. Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment [J]. Mater. Chem. Phys., 2017, 190: 31
11 Huang M, Fu Q G, Wang Y, et al. Corrosion resistant ceramic coating for X80 pipeline steel by low-temperature pack aluminizing and oxidation treatment [J]. Surf. Rev. Lett., 2013, 20: 1350063
12 Xiang Z D, Datta P K. Formation of aluminide coatings on low alloy steels at 650℃ by pack cementation process [J]. Mater. Sci. Technol., 2004, 20: 1297
13 Awan G H, Hasan F U. The morphology of coating/substrate interface in hot-dip-aluminized steels [J]. Mat. Sci. Eng., 2008, 472A: 157
14 Meng F L, Gao L, Zhang Y Y, et al. Study on aluminizing layer microstructures and performance of 35CrMo steel penetrated with solid powder [J]. Petro-Chem. Equip., 2010, 39(2): 15
14 孟凡良, 高磊, 张莹莹等. 35CrMo钢固体粉末渗铝及渗铝层性能研究 [J]. 石油化工设备, 2010, 39(2): 15
15 Wang Y Q, Zhang Y, Wilson D A. Formation of aluminide coatings on ferritic-martensitic steels by a low-temperature pack cementation process [J]. Surf. Coat. Technol., 2010, 204: 2737
16 Shi Y, He C C, Huang J K, et al. Thermodynamic analysis of the forming of intermetallic compounds on aluminum-steel welding interface [J]. J. Lanzhou. Univ. Technol., 2013, 39(4): 5
16 石玗, 何翠翠, 黄健康等. 铝钢焊接界面金属间化合物形成的热力学分析 [J]. 兰州理工大学学报, 2013, 39(4): 5
17 Xiang Z D, Datta P K. Kinetics of low-temperature pack aluminide coating formation on alloy steels [J]. Metall. Mater. Trans., 2006, 37A: 3359
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.