Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (3): 307-311    
  研究论文 本期目录 | 过刊浏览 |
放电气体对ECR-PECVD法制备微晶硅薄膜的影响
程华1,2 钱永产2 薛军2 吴爱民3 石南林1
1. 中国科学院金属研究所 沈阳 110016
2. 中国人民解放军装甲兵技术学院 长春 130117
3. 大连理工大学 大连 116024
Effect of Dilute Gas on Microcrystalline Si Films Deposited by ECR-PECVD
CHENG Hua1,2 QIAN Yongchan2 XUE Jun2 WU Aimin3 SHI Nanlin1*
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Armor Technique Institute of PLA, Changchun 130117
3. Dalian University of Technology, Dalian 116024
引用本文:

程华, 钱永产, 薛军, 吴爱民, 石南林. 放电气体对ECR-PECVD法制备微晶硅薄膜的影响[J]. 材料研究学报, 2013, 27(3): 307-311.
CHENG Hua1, 2 QIAN Yongchan, XUE Jun, WU Aimin, SHI Nanlin1*. Effect of Dilute Gas on Microcrystalline Si Films Deposited by ECR-PECVD[J]. Chinese Journal of Materials Research, 2013, 27(3): 307-311.

全文: PDF(1020 KB)  
摘要: 用电子回旋共振等离子体增强化学气相沉积(ECR-PECVD)法制备微晶硅薄膜, 研究了放电气体对薄膜沉积速率、薄膜中H含量、择优取向和结晶度的影响。结果表明, 以Ar作为放电气体时薄膜沉积速率比以H2作为放电气体时高1.5—2倍, 但是薄膜的结晶度较低; 以Ar作为放电气体时薄膜的H含量比以H2作为放电气体时的薄膜低; 放电气体对薄膜的择优取向和晶粒度没有显著的影响。
关键词 材料合成与加工工艺微晶硅薄膜ECR-PECVD放电气体    
Abstract:The microcrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. The effects of dilute gas on deposition rate, crystallinity, grain size and the configuration of H existing in microcrystalline silicon films were investigated. The results show that the deposition rate of the film using Ar as discharge gas is 1.5-2 times higher than that using H2, but the film crystallinity is lower. At the same time, the concentration of hydrogen in the films deposited using SiH4/Ar is less than that of using SiH4/H2, but the preferred orientations and the grain sizes of the films are analogous.
Key wordssynthesizing and processing technics    microcrystalline silicon film    ECR-PECVD    dilute gas
收稿日期: 2013-03-11     
ZTFLH:  O484  
1 B. Strahm, A. A. Howling, L. Sansonnens, Ch. Hollenstein, Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges, Plasma Sources Sci. Technol., 16, 80(2007)
2 S. Summers, H. S. Reehal, G. H. Shirkoohi, The effects of varying plasma parameters on silicon thin film growth by ECR plasma CVD, J. Phys. D: Appl. Phys., 34, 2782(2001)
3 Madhusudan Jana, Debajyoti Das, Microcrystallisation in Si:H: the effect of gas pressure in Ar-diluted SiH4 plasma, Solar Energy Materials & Solar Cells, 79, 519(2003)
4 M. Rondanini, S. Cereda, F. Montalenti, A multiscale model of the plasma assisted deposition of crystalline silicon, Surface & Coatings Technology, 201, 8863(2007)
5 J. K. Rath, Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications, Solar Energy Materials and Solar Cells, 76, 431(2003)
6 L. Sansonnens, A. A. Howling, Ch Hollenstein, The role of metastable atoms in argon-diluted silane radiofrequency plasmas, Journal of Physics D: Appllied Physics, 27, 1406(1994)
7 W. J. Soppe, C. Devilee, M. Geusebroek, The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition, Thin Solid Films, 515, 7490(2007)
8 T. Kamiya, K. Nakahata, A. Miida, Control of orientation from random to (220) or (400) in polycrystalline silicon films, Thin Solid Films, 337, 18(1999)
9 Madhumita Nath, P. Roca i Cabarrocas, E.V. Johnson, The open-circuit voltage in microcrystalline silicon solar cells of different degrees of crystallinity, Thin Solid Films, 516, 6974(2008)
10 T. Mates, A. Fejfar, I. Drbohlav, Role of grains in protocrystalline silicon layers grown at very low substrate temperatures and studied by atomic force microscopy, Journal of Non-Crystalline Solids, 299-302, 767(2002)
11 LIAO Naiman, LI Wei, JIANG Yadong, Recent progresses on the stability of hydrogenated amorphous silicon thin films, Materials Review, 21,21(2007)
(廖乃镘, 李 伟, 蒋亚东, 氢化非晶硅(a—Si:H)薄膜稳定性的研究进展, 材料导报, 21,21(2007))
12 H. Nickel, N. M. Johnson, J. Walker, Hydrogen-Induced Generation of Acceptorlike Defects in Polycrystalline Silicon, Physical Review Letters, 75, 3720(1995)
13 Madhusudan Jana, Debajyoti Das, A.K. Barua, Promotion of microcrystallization by argon in moderately hydrogen diluted silane plasma, Solar Energy Materials and Solar Cells, 74, 407(2002)
14 Debajyoti Das, Madhusudan Jana, A. K. Barua, Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma, Journal of Applied Physics, 89, 3041(2001)
15 M. Zhu, Y. Cao, X. Guo, Microstructure of poly-Si thin films prepared at low temperatures, Solar Energy Materials and Solar Cells, 62, 109(2000)
16 Wen-Chu Hsiaoa, Chuan-Pu Liua, Ying-Lang Wang, Thermal properties of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor deposition, Journal of Physics and Chemistry of Solids, 69, 648(2008)
17 G. Ambrosone, U. Coscia, S. Lettieri, Microcrystalline silicon thin films grown at high deposition rate by PECVD, Thin Solid Films, 511-512, 280(2006)
18 E. A. Davis, Hydrogen in silicon, Journal of Non-crystalline Solids, 198-200, 1(1996)
19 Rui Huang, Xuanying Lin, Wenyong Huang, Effect of hydrogen on the low-temperature growth of polycrystalline silicon film deposited by SiCl4/H2, Thin Solid Films, 513, 380(2006)
20 G. Ganguly. A. Matsuda, Importance of surface processes in defect formation in a-Si:H, Journal of Non-crystalline Solids, 164-166, 31(1993)
21 G. Ganguly, A. Matsuda, Defect formation process during growth of hydrogenated amorphous silicon at high temperatrure, Japanese Journal of Appllied Physics, 31, L1269(1992)
22 K. Tachibana, T. Mukai, H. Harima, Measurement of absolute densities and spatial distribution of Si and SiH in an RF-discharge silane plasma for the chemical vapour: deposition of a-Si:H films, Japanese Journal of Appllied Physics, 30, L1208(1991)
23 A. Gallagher, Neutral radical deposition from silane discharges, Journal of Appllied Physics, 63, 2406(1988)
24 M. J. Kushner, A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon, Journal of Appllied Physics, 63, 2532(1988)
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.