Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (9): 712-720    DOI: 10.11901/1005.3093.2020.402
  研究论文 本期目录 | 过刊浏览 |
Al含量对CrFeNiAlxSi系高熵合金性能的影响
李刚1,2(), 温影1, 于中民1, 刘囝1, 熊梓连1
1.辽宁工程技术大学矿业学院 阜新 123000
2.营口理工学院 营口 115000
Effect of Al Content on Properties of CrFeNiAlxSi High Entropy Alloy
LI Gang1,2(), WEN Ying1, YU Zhongmin1, LIU Jian1, XIONG Zilian1
1.College of Mines, Liaoning Technical University, Fuxin, 123000, China
2.Yingkou Institute of Technology, Yingkou 115000, China
引用本文:

李刚, 温影, 于中民, 刘囝, 熊梓连. Al含量对CrFeNiAlxSi系高熵合金性能的影响[J]. 材料研究学报, 2021, 35(9): 712-720.
Gang LI, Ying WEN, Zhongmin YU, Jian LIU, Zilian XIONG. Effect of Al Content on Properties of CrFeNiAlxSi High Entropy Alloy[J]. Chinese Journal of Materials Research, 2021, 35(9): 712-720.

全文: PDF(3757 KB)   HTML
摘要: 

选取与天然铬铁矿粉有效成分相近的Al、Cr、Fe、Ni、Si元素为高熵合金成分,采用激光烧结技术制备CrFeNiAlxSi系高熵合金,研究了Al含量对CrFeNiAlxSi系高熵合金的物相结构、显微组织、密度和孔隙率、显微硬度、耐磨和抗高温氧化性能的影响。结果表明:CrFeNiAlxSi(x=0.2、0.4、0.6、0.8、1.0)系高熵合金由BCC+FCC相构成,随着Al含量的提高FCC相减少;x=0.6的合金硬度最高,为813.3HV;合金的密度降低孔隙率提高,x=0.2的合金密度最大,为4.21 g·cm-³,孔隙率最低,为26.46%;x=0.6的合金耐磨性能最佳,磨损率为69.50 mg·cm-²;随着Al含量的提高,合金的抗高温氧化性能明显提高。

关键词 金属材料高熵合金相结构硬度抗高温氧化    
Abstract

CrFeNiAlxSi high entropy alloys were prepared via laser sintering with Al, Cr, Fe, Ni, Si and natural ferrochrome ore powder as raw materials. The effect of Al content on the phase structure, microstructure, density and porosity, microhardness, wear resistance and high temperature oxidation resistance of CrFeNiAlxSi high entropy alloys were investigated. The results show that CrFeNiAlxSi (x=0.2, 0.4, 0.6, 0.8, 1.0) high-entropy alloys composed of BCC+FCC phase. With the increase of Al content, the amount of FCC phase decreases gradually; when x=0.6, the hardness of the alloy reaches 813.3HV and the density of the alloy decreases and the porosity increases; when x=0.2, the density of the alloy is 4.21 g·cm-³ and the porosity is 26.46%; whilst when x=0.6, the wear resistance of the alloy is the best with wear rate of 69.50 mg·cm-²; Furthermore, the high temperature oxidation resistance of the alloy was obviously improved with the increasing Al-content.

Key wordsmetallic materials    high entropy-alloy    phase structure    hardness    high temperature oxidation resistance
收稿日期: 2020-09-27     
ZTFLH:  TG113  
基金资助:国家自然科学基金(51805235);营口理工学院创新团队支持计划(TD202001);营口理工学院高层次人才科研启动项目(YJRC202014)
作者简介: 李刚,男,1969年生,教授
PowderPurityGranularity/μmType and content of impurities
Fe≥98.35%

C≤0.05%, S≤0.018%, Si≤0.13%, P≤0.019%, O≤0.35%,

Mn≤0.30%, Acid insoluble substance≤0.35%

Al≥99.0%Fe≤0.6%, Si≤0.3%, Cu≤0.05%, N≤0.01%
Cr≥99.5%74Total amount of impurity cations≤0.01%
Ni≥99.5%Total amount of impurity cations≤0.01%
Si≥99.0%Fe≤0.4%, Ca≤0.1%, Al≤0.02%
表1  实验用粉末材料及其参数(质量分数,%)
Element typesCrFeNiAlSi
Melting temperature/℃1857153514536601414
Atomic radius/nm0.1250.1241.250.1430.117
Valence electron concentration681034
Electronegativity1.661.831.911.611.90
表2  合金元素的基本物理参数
Element typesCrFeNiAlSi
Cr--1-7-10-37
Fe---2-11-35
Ni----22-40
Al-----19
Si-----
表3  合金元素间的混合焓[19]
Mole content

ΔSconf

/J·(K·mol)-1

ΔHmix

/kJ·mol-1

δ

/%

ΔχVEC
0.21.512-30.4754.3930.10846.808
0.41.565-30.2695.3730.11406.629
0.61.591-29.9766.0420.11836.466
0.81.605-29.7276.5310.12156.325
1.01.609-29.4406.8840.12426.200
表4  CrFeNiAlxSi高熵合金的相稳定参数
图1  CrFeNiAlxSi系高熵合金的XRD谱
CrFeNiAl0.2SiCrFeNiAl0.4SiCrFeNiAl0.6SiCrFeNiAl0.8SiCrFeNiAl1.0Si
BCC43.1747.9554.6469.6275.71
FCC56.8352.0545.3630.3824.29
表5  CrFeNiAlxSi系高熵合金的相体积分数
图2  CrFeNiAlxSi系高熵合金的微观组织
图3  CrFeNiAlSi高熵合金的扫描电镜照片
ZoneCrystal structureAlCrFeNiSi
Nominal content-2020202020
ABCC30.2030.698.3020.4810.33
BBCC28.5131.919.3720.0910.12
CFCC11.528.8531.8429.7718.02
表6  CrFeNiAlSi合金各区域元素含量(原子分数,%)
图4  CrFeNiAlxSi系高熵合金的密度和孔隙率
图5  CrFeNiAlxSi系高熵合金的显微硬度和磨损率
图6  CrFeNiAlxSi系高熵合金磨损的显微形貌
图7  单位质量CrFeNiAlxSi高熵合金在800℃氧化的增重曲线
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
3 Zhang Y, Chen M B, Yang X, et al. Advanced Technology in High-entropy Alloys [M]. Beijing: Chemical Industry Press, 2019
3 张勇, 陈明彪, 杨潇等. 先进高熵合金技术 [M]. 北京: 化学工业出版社, 2019
4 Li W, Liu P, Liaw P K. Microstructures and properties of high-entropy alloy films and coatings: a review [J]. Mater. Res. Lett., 2018, 6: 199
5 Guo W Q, Jing S, Lu W J. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy [J]. Acta Mater., 2020, 185: 45
6 Ananiadis E, Lentzaris K, Georgatis E, et al. AlNiCrFeMn equiatomic high entropy alloy: A further insight in its microstructural evolution, mechanical and surface degradation response [J]. Met. Mater. Int., 2020, 26: 793
7 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
8 Yang H X, Li J S, Guo T, et al. Fully recrystallized Al0.5CoCrFeNi high-entropy alloy strengthened by nanoscale precipitates [J]. Met. Mater. Int., 2019, 25: 1145
9 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Chin. J. Mater. Res., 2019, 33: 650
9 曹雷刚, 朱琳, 张磊磊等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33: 650
10 Wang L, Qiao J W, Ma S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Mater. Sci. Eng., 2018, 727A: 727
11 Chen G, Wang L, Yang J, et al. Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys [J]. J. Mater. Eng., 2019, 47: 106
11 陈刚, 王璐, 杨静等. Al0.1CoCrFeNi高熵合金的力学性能和变形机理 [J]. 材料工程, 2019, 47: 106
12 Moravcik I, Gamanov S, Moravcikova-Gouvea L, et al. Influence of Ti on the tensile properties of the high-strength powder metallurgy high entropy alloys [J]. Materials, 2020, 13: 578
13 Jawaharram G S, Barr C M, Monterrosa A M, et al. Irradiation induced creep in nanocrystalline high entropy alloys [J]. Acta Mater., 2020, 182: 68
14 Qi P B, Liang X B, Tong Y G, et al. Effect of milling time on preparation of NbMoTaW high entropy alloy powder by mechanical alloying [J]. Rare Mat. Mater. Eng., 2019, 48: 2623
14 漆陪部, 梁秀兵, 仝永刚等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响 [J]. 稀有金属材料与工程, 2019, 48: 2623
15 Feng G J, Li Z R, Feng S C, et al. Effect of Ti-Al content on microstructure and mechanical properties of Cf/Al and TiAl joint by laser ignited self-propagating high-temperature synthesis [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1468
16 An R, Tian Y H, Kong L C, et al. Laser-ignited self-propagating behavior of self-supporting nano-scaled Ti/Al multilayer films [J]. Acta Metall. Sin., 2014, 50: 937
16 安荣, 田艳红, 孔令超等. 自支撑Ti/Al纳米多层膜激光诱发自蔓延行为 [J]. 金属学报, 2014, 50: 937
17 Li G, Zhang J B, Liu J, et al. Microstructure and properties of high entropy alloy composite coating prepared by laser with raw chromite powder [J]. Surf. Technol., 2019, 48: 228
17 李刚, 张井波, 刘囝等. 铬铁原矿粉激光制备高熵合金复合涂层的组织与性能 [J]. 表面技术, 2019, 48: 228
18 Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
18 王江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
19 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
20 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
21 Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses [J]. Mater. Sci. Eng., 2001, 304-306A: 446
22 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
23 Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropy alloys [J]. MRS Commun., 2014, 4: 57
24 Fang S S, Xiao X S, Xia L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. J. Non-Cryst. Solids, 2003, 321: 120
25 Guo S, Liu C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
26 Smith W F, Hashemi J. Foundations of Materials Science and Engineering [M]. Beijing: Machine Press, 2011
27 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
28 Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy [J]. Mater. Sci. Eng., 2015, 648A: 15
29 Zhang Z, Yu Z K, Cheng H, et al. Effect of Al content on microstructure and nanoindentation creep behaviors of AlxFeCoNiCu high-entropy alloys [J]. Hot Work. Technol., 2019, 48(12): 62
29 张正, 于忠卡, 程皓等. Al含量对AlxFeCoNiCu高熵合金结构和纳米压痕蠕变行为的影响 [J]. 热加工工艺, 2019, 48(12): 62
30 Bao Y Y, Ji X L, Gu P, et al. Effect of aluminum content on the microstructure and erosion wear resistance of FeCrNiCoCu high-entropy alloy coatings [J]. Tribology, 2017, 37: 421
30 鲍亚运, 纪秀林, 顾鹏等. Al含量对FeCrNiCoCu高熵合金涂层组织结构及冲蚀性能的影响 [J]. 摩擦学学报, 2017, 37: 421
31 Zhang X, Cui H Z, Wang M L, et al. Effect of Al content on microstructure and corrosion resistance of AlxCoCrFeNi high entropy alloys [J]. Trans. Mater. Heat Treat., 2018, 39(12): 29
31 张雪, 崔洪芝, 王明亮等. Al含量对AlxCoCrFeNi系高熵合金组织和耐蚀性能的影响 [J]. 材料热处理学报, 2018, 39(12): 29
32 Zhang Y, Zhou Y J. Solid solution formation criteria for high entropy alloys [J]. Mater. Sci. Forum, 2007, 561-565: 1337
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.