Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 154-158    
  研究论文 本期目录 | 过刊浏览 |
机械合金化和放电等离子烧结制备AgPbSbTe热电材料
周敏1; 李来风1; 李敬锋2
1.中国科学院理化技术研究所; 低温工程学重点实验室 北京 100190
2.清华大学材料科学与工程系; 新型陶瓷与精细工艺国家重点实验室 北京 100084
AgPbSbTe Thermoelectric Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering (SPS)
ZHOU Min1; LI Laifeng1; LI Jingfeng2
1.the Key Laboratory of Cryogenics; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190
2. State Key Laboratory of New Ceramics and Fine Processing; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

周敏 李来风 李敬锋. 机械合金化和放电等离子烧结制备AgPbSbTe热电材料[J]. 材料研究学报, 2010, 24(2): 154-158.
, , . AgPbSbTe Thermoelectric Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering (SPS)[J]. Chin J Mater Res, 2010, 24(2): 154-158.

全文: PDF(836 KB)  
摘要: 

采用机械合金化和放电等离子烧结方法制备高性能AgPbSbTe热电材料, 研究了制备工艺对材料热电性能的影响。结果表明, 材料的物相组成和热电性能都受到机械合金化时间的影响; 适当地控制放电等离子烧结工艺可以抑制晶粒长大, 增加晶界散射, 降低热导率。实验中得到AgPbSbTe热电材料的最大功率因子为18 μW/K2cm, 最小热导率为1.1 W/m K。机械合金化(球磨4 h、转速350 r/m)并在673 K放电等离子烧结5 min, 得到AgPbSbTe材料的最大热电优值ZT为1.2(700 K)。

关键词 无机非金属材料 热电材料 机械合金化 放电等离子烧结    
Abstract

High performance AgPbSbTe thermoelectric materials were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The effect of preparation technique on the thermoelectric properties was studied. The results showed that the phase composition and thermoelectric properties are related to the mechanical alloying. Appropriate SPS technique could decrease crystal growing, increase phonon scattering and reduce thermal conductivity. A maximum power factor of 18 μW/K2cm and a minimum thermal conductivity of 1.1 W/m K were obtained. A maximum ZT value of 1.2 was obtained at 700 K for the sample fabricated by MA (350 rpm for 4 hrs) and SPS (sintering at 673 K for 5 minute).

Key wordsinorganic non–metallic materials    thermoelectric materials    mechanical alloying    spark plasma sintering
收稿日期: 2009-12-15     
基金资助:

国家“973”计划2007CB607500, 国家自然科学基金50802101、50325207和50820145203项目资助。

1 R.Venkatasubramanian, E.Siivola, V.Colpitts, B.O'Quinn, Thin–film thermoelectric devices with high room–temperature figures of merit, Nature, 413(6856), 597(2001)
2 M.Zhou, C.D.Feng, L.D.Chen, X.Y.Huang, Effects of partial substitution of Co by Ni on the thermoelectric properties of TiCoSb–based half–Heusler compounds, Journal of Alloy Compd., 194, 391(2005)
3 M.Zhou, L.D.Chen, C.D.Feng, X.Y.Huang, Synthesis and electrical transport properties of TiCo1−xPdxSb half– Heusler compounds, Key Eng. Mater., 283, 405 (2005)
4 L.D.Hicks, T.C.Harman, X.S.Sun, Dresselhaus M S, Experimental study of the effect of quantum–well structures on the thermoelectric figure of merit, Phys. Rev. B: Condens. Matter Mater. Phys., 53, R10493(1996)
5 X.J.Zheng, L.L.Zhu, Y.H.Zhou, Q.J.Zhang, Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials, Appl. Phys. Lett., 87(24), 242101(2005)
6 D.M.Rowe, CRC Handbook of Thermoelectrics, (New York: CRC press, 1995) p.257
7 B.C.Sales, D.Mandrus, R.K.Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science, 272, 1325(1996)
8 B.C.Sales, B.C.Chakoumakos, D.Mandrus, R.K.Williams, J. Solid State Chem., 146(2), 528(1999)
9 YU Boling, QI Qiong, TANG Xinfeng, ZHANG Qingjie, Effect of grain size on thermoelectric properties of CoSb3 compound, Acta Physica Sinica, 54(12), 5763(2005)
(余柏林, 祁 琼, 唐新峰, 张清杰, 晶粒尺寸对CoSb3化合物热电性能的影响, 物理学报,  54(12), 5763(2005))
10 T.C.Harman, P.J.Taylor, M.P.Walsh, B.E.Laforge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, 297, 2229(2002)
11 T.C.Harman, D.L.Spears, M.J.Manfra, High thermoelectric figures of merit in PbTe quantum wells, J Electron Mater., 25(7), 1121(1996)
12 H.Beyer, J.Nurnus, H.Bottner, A.Lambrecht, T.Roch, G.Bauer, PbTe based superlattice structures with high thermoelectric efficiency, Appl. Phys. Lett., 80(7), 1216(2002)
13 T.C.Harman, M.P.Walsh, B.E.Laforge, G.W.Turne, Nanostructured thermoelectric materials, J Electron Mater., 34(5), 680(2005)
14 K.F.Hsu, S.Loo, F.Guo, W.Chen, J.S.Dyck, C.Uher, T.Hogan, E.K.Polychroniadis, M.G.Kanatzidis, Cubic AgPbmSbTem+2: bulk thermoelectric materials with high figure of merit, Science, 303, 818(2004)
15 ZHOU Min, LI Jinfeng, WANG Heng, Fabrication and property of high-performance Ag–Pb–Sb–Te system semiconduction thermoelectric materials, Chinese Science Bulletin, 52(1),114 (2007)
(周 敏, 李敬锋, 王 衡, 高性能Ag--Pb--Sb--Te体系半导体热电材料的制备与性能, 科学通报,  52(1), 114(2007))
16 M Zhou, J F Li, T Kita, Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance, J. Am. Chem. Soc., 130(13), 4527(2008)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.