Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 149-153    
  研究论文 本期目录 | 过刊浏览 |
氮对碳纤维石墨化的影响
高爱君; 靳玉伟; 徐樑华
碳纤维及功能高分子教育部重点实验室 北京化工大学材料科学与工程学院 北京100029
Effect of Nitrogen Element in the Graphitization of Carbon Fibre
GAO Aijun; JIN Yuwei; XU Lianghua
Key Laboratory of Carbon Fibre and Functional Polymer; Ministry of Education; School of Materials science and technology; Beijing University of Chemical Technology; Beijing 100029
引用本文:

高爱君 靳玉伟 徐樑华. 氮对碳纤维石墨化的影响[J]. 材料研究学报, 2010, 24(2): 149-153.
, , . Effect of Nitrogen Element in the Graphitization of Carbon Fibre[J]. Chin J Mater Res, 2010, 24(2): 149-153.

全文: PDF(687 KB)  
摘要: 

用元素分析、X射线衍射和拉曼光谱等手段对不同结构成分的石墨纤维进行表征, 研究了石墨结构与纤维中氮的关系。结果表明:在高温石墨化过程中, 随着氮的减少, 石墨微晶堆叠厚度和宽度不断增大, 纤维的晶区取向度和石墨化度提高。 氮含量大于0.08%时, 石墨片层中有氮原子的位置会扭曲变形, 不利于石墨微晶的生长, 石墨微晶大小、晶区取向度及石墨化度增长比较缓慢; 当氮元素含量小于0.08%时, 由氮引起的石墨片层缺陷很少, 石墨微晶大小、晶区取向度及石墨化度的增长速率随氮的减少而大幅度提高。脱除氮原子虽然不能引起石墨片层的生长, 但是含氮石墨片层生长的控制步骤。

关键词 无机非金属材料 石墨化 元素含量 微晶结构 取向度 石墨化度    
Abstract

Graphite fibers of Different nitrogen content was prepared. The element composition and crystallite structure of resulted fibers were investigated by means of element analysis, X-ray diffraction and Raman spectroscopy. The correlation between crystallite structure and nitrogen content of these fibers was investigated. The results show that, with decrease of nitrogen content, the graphite crystallite grow, crystallite orientation degree and graphitization degree increase. Crystallite size, crystallite orientation degree and graphitization degree increase slowly because of the distortion of the graphite layer with nitrogen atom when the fibers contain more than 0.08% nitrogen element. As nitrogen content is below 0.08%, the crystallite size, crystallite orientation degree and graphitization degree increase rapidly. Denitrogenation is control step of the growth of graphite crystallite containing nitrogen atom, but can't lead to the growth of graphite crystallite directly.

Key wordsinorganic non-metallic materials         graphitization     elemental content    crystallite structure    orientation degree    graphitization degree
收稿日期: 2009-12-24     
基金资助:

国家重点基础研究发展计划

作者简介: Supported by National Basic Research Program of China No.2006CB605302.
1 LIU Hongbo, XU Zhongyu, ZHANG Hongbo, SU Yuchang, The effect of heat-treatment temperature on the structure and mechanical properties of carbon fiber, Synthetic Fiber Industry, 18(6), 18(1995) (刘洪波, 徐仲榆, 张红波, 苏玉长, 高温热处理温度对PAN基碳纤维结构和力学性能的影响, 合成纤维工业,   18(6), 18(1995)) 2 LIU Fujie, WANG Haojing, FAN Lidong, The change of density under high temperature heat treatment in PAN-based carbon fibers, New Chemical Materials, 35(1), 43(2007) (刘福杰, 王浩静, 范立东, PAN碳纤维在高温石墨化过程中密度的变化规律, 化工新型材料, 35(1), 43(2007)) 3 R.B.Mathur, V.Gupta, O.P.Bahl, A.Tressaud, S.Flandrois. Improvement in the mechanical properties of polyacryloaitrile (PAN)-based carbon fibers after fluorination. Synthetic Metals, 114(2), 197(2000) 4 J.Kim, W.I.Lee, K.Lafdi, Numerical modeling of the carbonization process in the manufacture of carbon/carbon composites, Carbon, 41(13), 2625(2003) 5 CHEN Tengfei, HUANG Boyun, LIAO Jiqiao, LIU Genshan, ZHANG Fuqin, Effect of heat-treatment temperature on microstructure and mechanical performance of PAN-based carbon fibers, Journal of Functional Materials, 33(4), 447(2002) (陈腾飞, 黄伯云, 廖寄乔, 刘根山, 张福勤, 热处理温度对PAN基炭纤维结构的影响, 功能材料,  33(4), 447(2002)) 6 CHAGN Weipu, SHEN Zengmin, WANG Qiang, Manufacture of high modulus graphitized carbon fibers, New Carbon Materials, 13(1), 28(1998) (常维璞, 沈曾民, 王强, 高模量炭纤维的研制, 新型炭材料,  13(1), 28(1998)) 7 ZHANG Weiqin, TIAN Yanhong, YANG Yanfeng, Zhang Xiping, Sheng Zengmin, Study on the surface morphology of the HTT carbon fibers by SEM , New CarbonM aterials, 16(3), 52(2001)) (张为芹, 田艳红, 杨延风, 张西萍, 沈曾民, 高温热处理对炭纤维性能的影响, 新型炭材料,  16(3), 52(2001)) 8 XUE Linbing, WANG Haojing, LI Dongfeng, Effect of stress graphitization on the microstructure and mechanical properties of graphite fibers, New Carbon Materials, 21(3), 243(2006) (薛林兵, 王浩静, 李东风, 牵伸石墨化对石墨纤维结构和力学性能的影响, 新型炭材料,  21(3), 243(2006)) 9 LI Dongfeng, WANG Haojing, XUE Linbing, WANG Xinkui, Preferred orientation of Pan-based carbon fibers during continuous graphitization, Chemical Industry and Engineering Progress, 25(9), 1101(2006) (李东风, 王浩静, 薛林兵, 王心葵, PAN基碳纤维连续石墨化过程中的取向性, 化工进展,  25(9), 1101(2006)) 10 XU Zhongyu, LIU Hongbo, SU Yuchang, YANG Ruizhi, GONG Weizhi, Using hot stretching in graphitization to prepare PAN-based of high properties, Carbon, 3, 4(1997) (徐仲榆, 刘洪波, 苏玉长, 杨瑞枝, 龚伟志, 在石墨化过程中采用热牵伸法制备高性能PAN基炭纤维, 炭素,  3, 4(1997)) 11 HE Fu, Carbon Fiber and its Application Technology (Beijing, Chemical industry press, 2004) p.86 (贺福,  碳纤维及其应用技术, (北京, 化学工业出版社, 2004) p.86) 12 J.Chen, J.Y.Shan, T.Tsukada, F.Munekane, A.Kuno, M.Matsuo, T.Hayashi, Y.A.Kim, M.Endo, The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon, 45, 274(2007) 13 A.Sadezky, H.Muckenhuber, H.Grothe, Raman microspectroscopy of soot and related carbonaceous materials: Spectrl analysis and structural information, Carbon, 43, 1731(2005)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.