Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 81-86    
  研究论文 本期目录 | 过刊浏览 |
CPP/β--TCP双相磷酸钙陶瓷的制备
范纯泉1;2;  陈高祥2;  李万万3; 孙康3; 许国华1;2; 叶晓健1;2
1.上海市长征医院骨科 上海 200003
2.纳米技术及应用国家工程研究中心 上海 200241
3.上海交通大学金属基复合材料国家重点实验室 上海 200240
Combining Calcium Polyphosphate with Hydroxyapatite for CPP/β–TC Biphasic Calcium Phosphate Bio–ceramic
FAN Chunquan 1;2; CHEN Gaoxiang 2; LI Wanwan 3; SUN Kang 3; XU Guohua 1;2 ; YE Xiaojian 1;2
1.Shanghai Changzheng Hospital; Shanghai 200003
2.National Engineering Research Center of Nanotechnology; Shanghai 200241
3.State Key Lab of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240  
引用本文:

范纯泉 陈高祥 李万万 孙康 许国华 叶晓健. CPP/β--TCP双相磷酸钙陶瓷的制备[J]. 材料研究学报, 2010, 24(1): 81-86.
, , . Combining Calcium Polyphosphate with Hydroxyapatite for CPP/β–TC Biphasic Calcium Phosphate Bio–ceramic[J]. Chin J Mater Res, 2010, 24(1): 81-86.

全文: PDF(1230 KB)  
摘要: 

将聚磷酸钙(CPP)与生物羟基磷灰石(HA)复合制备出非晶态CPP/晶态β--TCP新型双相磷酸钙生物陶瓷, 研究了CPP的含量和煅烧温度对其相组分、烧结性能和力学性能的影响。 结果表明, 高温下HA与CPP反应生成β--磷酸三钙(β--TCP)和水。 当初始原料中CPP的含量(质量分数, 下同)高于10%时, 可制备出新型双相磷酸钙生物陶瓷CPP/β--TCP;当CPP的含量低于10%时, 可制备出以HA/β--TCP为主相的复相陶瓷。 在CPP含量为0--15%、煅烧温度高于1250℃或CPP含量为15%--30%、煅烧温度为1150--1250℃的条件下,都可制备出抗压强度较高的复相磷酸钙陶瓷。

关键词 无机非金属材料 双相磷酸钙 烧结  CPP /β-TCP    
Abstract

A novel biphasic calcium phosphate (BCP) amorphous CPP/crystalline β–TCP was prepared by adding calcium polyphosphate (CPP) into hydroxyapatite (HA). The effects of CPP dosage (mass fraction) on the phase compositions, sintering property, and mechanical strength of the composite were investigated. Results show that CPP would react with HA to produce β–calcium phosphate (β–TCP) and H2O, excessive dosage of CPP (>10%) would obtain a novel BCP (β–TCP and amorphous–CPP), and less dosage of CPP (<10%) would obtain a traditional BCP (HA/β–TCP). Meanwhile, high compressive strength could be obtained either at high sintering temperature (>1250oC)  with small (0–15%) CPP dosage or at high CPP dosage (15–30%) at intermediate sintering temperature (1150–1250 oC).

Key wordsNonmetallic and inorganic materials    Biphasic calcium phosphates     Sintering    CPP /β-TCP
收稿日期: 2009-07-07     
基金资助:

国家重点基础研究发展计划2009CB930000与上海市科委纳米技术专项0852nm03100资助项目。

1 CAI Shu, WANG Yanwei, LI Jinyou, LI Hongxiang , YAO Kangde, Thermal stability and microstructure of calcium phosphate ceramics, Journal of Tianjin University, 37(4), 346(2004)
(蔡舒, 王彦伟, 李金有, 李鸿祥, 姚康德, 磷酸钙陶瓷的热稳定性和显微结构, 天津大学学报,  37(4), 346(2004))
2 QIU Kai, CHEN Xin, WAN Changxiu, Advances in research on calcium polyphosphate bioceramic for bone tissue engineering scaffold, Journal of Biomedical Engineering, 22(3), 614(2005)
(邱 凯, 陈 馨, 万昌秀, 骨组织工程支架材料聚磷酸钙生物陶瓷研究进展, 生物医学工程学杂志,  22(3), 614(2005))
3 K.Nezahat, A.C.Tas, Synthesis of calcium hydroxyapatite–tricalcium phosphate (HA–TCP) composite bioceramic powders and their sintering behavior, Journal of American Ceramic Society, 81(9), 2245(1998)
4 O.E.Petrov, E.Dyulgerova, L.Petrov, R.Popova, Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca–P ceramics, Materials Letters, 48(3–4), 162(2001)
5 O.Gauthier, J.M.Bouler, E.Aguado, R.Z.Legeros, P.Pilet, G.Daculsi, Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics, Journal of Materials Science: Materials in Medicine, 10(4), 199(1999)
6 H.R.Ramay, M.Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load–bearing bone tissue engineering, Biomaterials, 25(21), 5171(2004)
7 M.D.Grynpas, R.M.Pilliar, R.A.Kandel, Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies, Biomaterials, 23(9), 2063(2002)
8 R.M.Pilliar, M.J.Filiaggi, J.D.Wells, Porous calcium polyphosphate scaffolds for bone substitute applications– in vitro characterization, Biomaterials, 22(9), 963(2001)
9 R.A.Kandel, M.Grynpas, R.Pilliar, Repair of osteochondral defects with biphasic cartilage–calcium polyphosphate constructs in a sheep model, Biomaterials, 27(22), 4120(2006)
10 S.M.Lien, C.K.Liu, T.J.Huang, A novel surface modification on calcium polyphosphate scaffold for articular cartilage tissue engineering, Materials Science Engineering C, 27, 127(2007)
11 L.E.Jackson, B.M.Kariuki, M.E.Smith, J.E.Barralet, A.J.Wright, Synthesis and structure of a calcium polyphosphate with a unique criss–cross arrangement of helical phosphate chains, Chemical Materials, 17, 4642(2005)
12 K.Qiu, C.X.Wan, C.S.Zhao, Fabrication and characterization of porous calcium polyphosphate scaffolds, Journal of Materials Science, 41(8), 2429(2006)
13 S.Omelon, A.Baer, T.Coyle, R.M.Pilliar, R.Kandel, M.Grynpas, Polymeric crystallization and condensation of calcium polyphosphate glass, Materials Research Bulletin, 43, 68(2008)
14 A.Dion, B.Berno, G.Hall, The effect of processing on the structural characteristics of vancomycin–loaded amorphous calcium phosphate matrices, Biomaterials, 26(21), 4486(2005)
15 K.Meyer, Characterization of the structure of binary zinc ultra–phosphate glasses by infrared and Raman spectroscopy, Journal of Non–Crystal Solids, 209, 227(1997)
16 QIU Kai, Study of strontium-doped calcium polyphosphate for bone tissue engineering scaffolds, PhD thesis, Sichuan University, 26(2005)
(邱 凯, 掺锶聚磷酸钙作为骨组织工程支架材料的研究, 四川大学博士学位 论文, 26(2005))
17 Y.Hu, X.Miao, Comparison of hydroxyapatite ceramics and hydroxyapatite/borosilicate glass composites prepared by slip casting, Ceramics International, 52, 1898(2003)
18 R.Murugan, S.Ramakrishna, Effect of zirconia on the formation of calcium phosphate, bioceramics under microwave irradiation, Materials Letters, 58, 230(2003)
19 H.R.Ramay, M.Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel–casting and polymer sponge methods, Biomaterials, 24(19), 3293(2003)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.