Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 646-651    
  研究论文 本期目录 | 过刊浏览 |
掺杂对LiFePO4电化学性能的影响
康晓雪1; 田彦文 1; 邵忠宝2; 袁万颂1
1.东北大学材料与冶金学院 沈阳 110004
2.东北大学理学院 沈阳 110004
The effect on electrochemical performance of LiFePO4 by different doping
KANG Xiaoxue1; TIAN Yanwen1; SHAO Zhongbao2;  YUAN Wansong1
1.School of Materials and Metallurgy; Northeastern University; Shenyang 110004
2.School of Science; Northeastern University; Shenyang 110004
引用本文:

康晓雪 田彦文 邵忠宝 袁万颂. 掺杂对LiFePO4电化学性能的影响[J]. 材料研究学报, 2009, 23(6): 646-651.
. The effect on electrochemical performance of LiFePO4 by different doping[J]. Chin J Mater Res, 2009, 23(6): 646-651.

全文: PDF(1200 KB)  
摘要: 

用水热法制备LiFe0.95M0.05PO4(M = Mg, Ni, Co), 研究了掺杂对材料电化学性能的影响. 结果表明, 液相Fe位掺杂合成的LiFe 0.95 M 0.05PO4具有纯相橄榄石结构、结晶良好、粒径均匀; Fe位掺杂可增强材料的可逆性和导电性, 提高其1C倍率下的电化学容量和循环稳定性; LiFe0.95Mg 0.05PO4, LiFe 0.95 Ni 0.05 PO 4 和LiFe 0.95 Co 0.05 PO 4三种材料的1C倍率首次放电比容量分别为133.1 mAh ?g-1, 128.4 mAh ?g -1 和135.2 mAh ? g -1; 三种掺杂离子中Co 2+掺杂的效果最好, 0.1C和1C倍率放电循环30次后的容量衰减率仅为5.7%和9.5%.

关键词 无机非金属材料  LiFePO4  Fe位掺杂 水热合成 液相掺杂    
Abstract

LiFe 0.95 M 0.05 PO 4  (M=Mg, Ni, Co) were synthesized by hydrothermal process with Fe-site doping in liquid phase. The samples of LiFe0.95 M 0.05 PO 4 were characterized by XRD, FTIR and SEM methods. The effect of Fe-site doping on electrochemical properties of the samples was investigated. The results show that the electrochemical capacity and cyclic stability of LiFe 0.95 M 0.05 PO 4 at 1C are enhanced. Under 1C rate, the first discharge capacity of LiFe 0.95 Mg 0.05 PO 4,  LiFe 0.95 Ni 0.05 PO 4 and LiFe 0.95 Co 0.05 PO 4 exhibit 133.1 mAh·g−1, 128.4 mAh·g−1 and 135.2 mAh·g−1, respectively. In three doping ions, the result of Co 2+ doping is the best. The capacity fading rates of LiFe 0.95 Co 0.05 PO 4 are 5.7% at 0.1C and 9.5% at 1C after 30 cycles. Such a significant improvement of electrochemical performance at 1C rate should be related to the enhancement of the reversibility and conductivity of LiFePO4 doped by bivalent cation
in Fe-site.

Key wordsinorganic non-metallic materials    LiFePO4    Fe-site doping    hydrothermal synthesis    doping in liquid phase
收稿日期: 2009-05-31     
ZTFLH: 

TM912

 
基金资助:

辽宁省科技攻关2005224016资助项目.

1 A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society, 144(4), 1188-1194(1997) 2 M.Takahashi, S.Tobishima, K.Takei, Y.Sakurai, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 148(3-4), 283-289(2002) 3 H.Huang, S.C.Yin, L.F.Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical and Solid State Letters, 4(10), A170- A172(2001) 4 F.Croce, A.D.Epifanio, J.Hassoun, A.Deptula, T.Olczac, B.Scrosati, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochemical and Solid State Letters, 5(3), A47-A50(2002) 5 Z.Wang, S.Su, C.Yu, Y.Chen, D.Xia, Synthesises, characterizations and electrochemical properties of sphericallike LiFePO4 by hydrothermal method, Journal of Power Sources, 184(2), 633-636(2008) 6 S.Y.Chung, J.T.Bloking, Y.M.Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials, 1(2), 123-128(2002) 7 J.Barker, M.Y.Saidi, J.L.Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method, Electrochemical and Solid State Letters, 6(3), A53-A55(2003) 8 K.Dokko, S.Koizumi, K.Sharaishi, K.Kanamura, Electrochemical properties of LiFePO4 prepared via hydrothermal route, Journal of Power Sources, 165(2), 656-659(2007) 9 E.M.Jin, B.Jin, D.K.Jun, K.H.Park, H.B.Gu, K.W.Kim, A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method, Journal of Power Sources, 178(2), 801-806(2008) 10 C.M.Burba, R.Frech, Raman and FTIR spectroscopic study of LixFePO4 (0 x 1), Journal of the Electrochemical Society, 151(7), A1032-A1038(2004) 11 A.Yamada, S.C.Chung, K.Hinokuma, Optimized LiFePO4 for lithium battery cathodes, Journal of the Electrochemical Society, 148(3), A224-A229(2001) 12 D.Y.W.Yu, C.Fietzek, W.Weydanz, K.Donoue, T.Inoue, H.Kurokawa, S.Fujitani, Study of LiFePO4 by cyclic voltammetry, Journal of the Electrochemical Society, 154(4), A253-A257(2007)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.