Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 430-436    DOI: 10.11901/1005.3093.2023.366
  研究论文 本期目录 | 过刊浏览 |
氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能
徐东卫1, 张明举1, 申志豪1, 夏晨露1, 徐京满1, 郭晓琴1, 熊需海2, 陈平3()
1.郑州航空工业管理学院材料学院 郑州 450046
2.沈阳航空航天大学材料科学与工程学院 沈阳 110136
3.大连理工大学 精细化工国家重点实验室 大连 116024
Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs
XU Dongwei1, ZHANG Mingju1, SHEN Zhihao1, XIA Chenlu1, XU Jingman1, GUO Xiaoqin1, XIONG Xuhai2, CHEN Ping3()
1.School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
2.Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China
3.State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
引用本文:

徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
Dongwei XU, Mingju ZHANG, Zhihao SHEN, Chenlu XIA, Jingman XU, Xiaoqin GUO, Xuhai XIONG, Ping CHEN. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. Chinese Journal of Materials Research, 2024, 38(6): 430-436.

全文: PDF(10496 KB)   HTML
摘要: 

用一步热解工艺制备氮掺杂碳纳米管原位封装金属粒子异质结构(Fe3O4@NCNTs),使用粉末X射线衍射(XRD)、拉曼光谱、扫描电镜(SEM)和透射电镜(TEM)等手段表征其结构和物相组成,基于同轴法测试其电磁参数并用Matlab模拟反射损耗。结果表明:煅烧温度和原料比例对氮元素掺杂磁功能化碳纳米管复合材料的微波吸收性能有重要的影响。当原料比例(金属盐/碳源)为2∶1时,煅烧温度为750℃、低填充量为10%的复合材料具有最优异的吸波性能,其最小反射损耗(RLmin)为-57.7 dB,匹配厚度为2.0 mm时,有效吸收带宽(EAB)达到6.4 GHz。

关键词 复合材料碳纳米管催化生长微波吸收性能阻抗匹配    
Abstract

One-dimensional carbon nanotubes (CNTs) have made them candidate as lightweight broadband microwave absorption material due to their intrinsic high electrical conductivity, light weight, and high specific surface area etc. In this paper, heterostructures of magnetic particels of iron oxide encapsulated with nitrogen-doped carbon nanotubes (Fe3O4@NCNTs) have been successfully constructed in-situ by one-step pyrolysis process. The phase composition and structure of the composites were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The electromagnetic parameters were measured by coaxial method and the reflection loss was simulated by Matlab. The results show that the calcination temperatures and the raw material ratio have important effect on the microwave absorption properties of nitrogen-doped magnetic functionalized carbon nanotube composites. The results demonstrated that when the calcination temperature was 750oC and the raw material ratio (metal salt/carbon source) is 2:1, the Fe3O4@NCNTs-750 hybrids with only 10% of functional fillers reached a minimum reflection loss value of -57.7 dB and a maximum effective absorption bandwidth (EAB, below -10 dB) of 6.4 GHz at 2.0 mm.

Key wordscomposite    carbon nanotube    catalytic growth    microwave absorption performance    impedance matching
收稿日期: 2023-07-22     
ZTFLH:  TB332  
基金资助:河南省青年基金(232300420332);河南省高校重点科研项目(23A430006);郑州航院青年科研专项(23ZHQN01005);国家自然科学基金(51873109);辽宁省兴辽英才计划-创新领军人才项目(XLYC1802085)
通讯作者: 陈平,教授,Pchen@dlut.edu.cn,研究方向为高性能高分子材料与先进聚合物基复合材料结构与功能一体化设计与制备
Corresponding author: CHEN Ping, Tel: (0411)84986100, E-mail: Pchen@dlut.edu.cn
作者简介: 徐东卫,男,1990年生,讲师
图1  在不同温度煅烧的Fe3O4@NCNTs复合材料的XRD谱、拉曼谱和Fe3O4@NCNTs-750的XPS全谱
图2  Fe3O4@NCNTs-X复合材料的SEM和TEM照片
图3  三维和不同匹配厚度条件下的反射损耗
图4  在不同温度煅烧的Fe3O4@NCNTs-X复合材料的介电常数
图5  在不同温度煅烧的Fe3O4@NCNTs复合材料的Cole-Cole环和涡流损耗系数
图6  在不同温度煅烧的Fe3O4@NCNTs-X复合材料的衰减系数
1 Yang Z T, Wang T, Wang J F, et al. Heterogeneous N-doped carbon composite NiSe2-FeSe double-shell hollow nanorods for tunable and high-efficient microwave attenuation [J]. Carbon, 2023, 201: 491
2 Zhao H H, Han X J, Li Z N, et al. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and light weight microwave absorber [J]. J Colloid Interf. Sci., 2018, 528: 174
3 Cheng Z, Wang R F, Cao Y S, et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel [J]. Adv. Funct. Mater., 2022, 2205160
4 Wang Y, Gao X, Lin C H, et al. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. J. Alloys Compds., 2019, 785: 765
5 Xu D W, Ren Y M, Guo X Q, et al. Synthesis of super-hydrophobic and self-cleaning magnetic graphene aerogel with excellent microwave absorption properties [J]. Diam. Relat. Mater., 2022, 126:109045
6 Liu J, Cao M S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature [J]. ACS Appl. Mater. Interfaces., 2016, 8: 22615
7 Yang M L, Yuan Y, Yin W L, et al. Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption [J]. Appl. Surf. Sci., 2019, 469: 607
8 Wang Y, Gao X, Wu X M, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber [J]. Chem. Eng. J., 2019, 375: 121942
9 Wang C H, Ding Y J, Yuan Y, et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption [J]. J. Mater. Chem. C., 2015, 3: 11893
10 Liu P B, Zhang Y Q, Yan J, et al. Synthesis of light weight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 368: 285
11 Xu D W, Ren Y M, Guo X Q, et al. Multiscale core-shell CoO@Co€PGN/CNTs composites aerogels for ultra-wide microwave absorption [J]. Compos. Sci. Technol., 2022, 225: 109524
12 Xia Y X, Gao W W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption [J]. Adv. Funct. Mater., 2022, 2204591
13 Zhi D D, Li T, Li J Z, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption [J]. Compos. Part B-Eng., 2021, 211: 108642
14 Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
15 Miao P, Chen J X, Tang Y S, et al. Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks [J]. Sci. China Mater., 2020, 63: 2050
16 Wang Y Q, Zhao H B, Cheng J B, et al. Hierarchical­Ti3C2T x @ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins [J]. Nano-Micro Lett. 2022, 14: 76
17 Guo R D, Su D, Chen F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption [J]. ACS Appl. Mater. Interfaces., 2022, 14: 3084
18 Dong Y Y, Zhu X J, Pan F, et al. Mace‑like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high‑efficient electromagnetic wave absorber [J]. Adv. Compos. Hybrid Mater., 2021, 4: 1002
19 Zhang Y Y, Yu Y, Yuan Y, et al. Reduced graphene oxide-wrapped Fe-Fe3O4@mSiO2 hollow core-shell composites with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem. C., 2022, 10: 15620
20 Zhang Y H, Meng H J, Shi Y P, et al. TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption [J]. Compos. Part B-Eng., 2020, 193: 108028
21 Ge J W, Cui Y, Qian J X, et al. Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption [J]. J. Mater. Sci. Technol., 2022, 102: 24
doi: 10.1016/j.jmst.2021.07.003
22 Quan B, Liang X H, Yi H, et al. Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response [J]. J. Mater. Chem. C., 2018, 6: 11659
23 Zhang Z W, Cai Z H, Wang Z Y, et al. A review on metal-organic framework‑derived porous carbon‑based novel microwave absorption materials [J]. Nano-Micro. Lett., 2021, 13: 56
24 Zhu X Y, Qiu H F, Chen P. Modified graphitic carbon nitride (MCN)/Fe3O4 composite as a super electromagnetic wave absorber [J]. J. Mater. Chem. A., 2021, 9:23643
25 Xu D W, Guo H H, Zhang F F, et al. In situ formation of CoS2 hollow nanoboxes via ion-exchange for high-performance microwave absorption [J]. Nanomaterials, 2022, 12: 2876
[1] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[2] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[3] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[4] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[5] 徐东卫, 王瑞琪, 陈平. 石墨烯基吸波复合材料研究进展[J]. 材料研究学报, 2024, 38(1): 1-13.
[6] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[9] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[10] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[11] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[12] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[13] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[14] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.