Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 33-42    DOI: 10.11901/1005.3093.2022.653
  研究论文 本期目录 | 过刊浏览 |
聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能
李朝阳1,2, 薛怿1,2, 阳泽濠1,2, 赵庆志1,2, 彭砚双1,2, 刘勇1,2, 杨建平1, 张辉1,2()
1 东华大学材料科学与工程学院 纤维材料改性国家重点实验室 上海 201620
2 东华大学 民用航空复合材料协同创新中心 上海 201620
Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil
LI Zhaoyang1,2, XUE Yi1,2, YANG Zehao1,2, ZHAO Qingzhi1,2, PENG Yanshuang1,2, LIU Yong1,2, YANG Jianping1, ZHANG Hui1,2()
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, School of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
引用本文:

李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
Zhaoyang LI, Yi XUE, Zehao YANG, Qingzhi ZHAO, Yanshuang PENG, Yong LIU, Jianping YANG, Hui ZHANG. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil[J]. Chinese Journal of Materials Research, 2024, 38(1): 33-42.

全文: PDF(19695 KB)   HTML
摘要: 

先用湿法纺丝制备聚醚砜(PES)多孔纤维并进行湿法抄造制备出四种不同面密度的PES多孔纤维网纱(PESV),用真空辅助树脂灌注成型(VARI)制备出聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料。研究了PES多孔纤维在环氧树脂的溶解行为以及复合材料的Ⅰ型层间断裂韧性(GIC)和Ⅱ型层间断裂韧性(GⅡC)、层间剪切强度和弯曲性能,并分析了复合材料层间断裂的微观形貌。结果表明,固化温度为180℃时,PES多孔纤维完全溶解在环氧树脂中;PESV面密度为31.6 g/m2时CF/EP复合材料的GICGⅡC最佳,分别提高了54.4%和62.2%。其原因是,PES多孔纤维在环氧树脂中溶解后相分离形成了PES/环氧树脂的两相结构,改善了层间韧性;PESV面密度为21.9 g/m2时,复合材料的层间剪切强度、弯曲强度和弯曲模量也分别提高了2.9%、4.0%和7.7%。

关键词 复合材料层间增韧碳纤维聚醚砜纤维网纱    
Abstract

In order to improve the interlaminar toughness of carbon fiber/epoxy (CF/EP) composites, polyethersulfone (PES) porous fibers were prepared by wet spinning, and four PES porous fiber veils (PESV) with different areal densities were prepared by wet-laid method, which were subsequently used for interlaminar toughening of CF/EP composites by vacuum-assisted resin infusion molding (VARI). The dissolution behavior of PES porous fibers in epoxy resin, the mode I (GIC) and mode II (GIIC) interlaminar fracture toughness, the interlaminar shear strength and flexural properties of the composites were systematically examined, and the interlaminar fracture microscopic morphology of the composites was also characterized. The results showed that the PES porous fibers were completely dissolved in the epoxy resin at the curing temperature of 180oC; The GIC and GIIC of CF/EP composites were best at the areal density of 31.6 g/m2, which increased by 54.4% and 62.2%, respectively, which may be ascribed to that the phase separation of PES porous fibers dissolved in epoxy resin resulted in a two-phase PES/epoxy structure, thereby, improved the interlayer toughness; The interlaminar shear strength, flexural strength and flexural modulus of CF/EP composites also increased by 2.9%, 4.0% and 7.7%, respectively, for the areal density of 21.9 g/m2.

Key wordscomposite    carbon fiber    interlaminar toughen    polyethersulfone    fiber veil
收稿日期: 2022-12-09     
ZTFLH:  TB332  
基金资助:上海市科委“科技创新行动计划”(20511107300);国家重点研发计划(2022YFB3709202)
通讯作者: 张辉,副研究员,zhanghui@dhu.edu.cn,研究方向为碳纤维增强树脂基复合材料
Corresponding author: ZHANG Hui, Tel: 13681792738, E-mail: zhanghui@dhu.edu.cn
作者简介: 李朝阳,男,1994年生,硕士
图1  PES多孔纤维的照片和微观SEM照片
图2  不同面密度PESV的形貌
图3  不同温度下PES纤维在环氧树脂中的形态
图4  不同面密度PESV层间增韧CF/EP复合材料的Ⅰ型层间断裂韧性
图5  不同面密度PESV层间增韧CF/EP复合材料GIC测试断裂面的SEM照片
图6  NMP刻蚀后PESV层间增韧CF/EP复合材料GIC测试断裂面的SEM照片
图7  不同面密度PESV层间增韧CF/EP复合材料的 Ⅱ 型层间断裂韧性
图8  不同面密度PESV层间增韧CF/EP复合材料GⅡC测试断裂面的SEM照片
图9  不同面密度PESV层间增韧CF/EP复合材料的层间剪切强度
图10  不同面密度PESV层间增韧CF/EP复合材料的弯曲性能
图11  不同面密度PESV层间增韧CF/EP复合材料的增韧机制示意图
1 Jiang S C, Bao J W, Zhang L W, et al. Research progress of liquid molding resin matrix composites and its technology [J]. Aeronaut. Manuf. Technol., 2021, 64(5): 70
1 蒋诗才, 包建文, 张连旺 等.液体成型树脂基复合材料及其工艺研究进展 [J]. 航空制造技术, 2021, 64(5): 70
2 Li P X, Chen P, Su J Z, et al. The recent development of advanced liquid composite molding technique and its application in aviation [J]. Fiber Reinf. Plast/Compos., 2016, (8): 99
2 李培旭, 陈 萍, 苏佳智 等.复合材料先进液体成型技术的航空应用与最新发展 [J]. 玻璃钢/复合材料, 2016, (8): 99
3 Jayan J S, Saritha A, Joseph K.Innovative materials of this era for toughening the epoxy matrix: a review [J]. Polym. Compos., 2018, 39(S4): E1959
4 Kolednik O, Kasberger R, Sistaninia M, et al. Development of damage-tolerant and fracture-resistant materials by utilizing the material inhomogeneity effect [J]. J. Appl. Mech., 2019, 86(11): 111004
doi: 10.1115/1.4043829
5 Yi X S, Xu Y H, Cheng Q F, et al. Development of studies on polymer matrix aircraft composite materials highly toughened [J]. Sci. Technol. Rev., 2008, 26(6): 84
5 益小苏, 许亚洪, 程群峰 等.航空树脂基复合材料的高韧性化研究进展 [J]. 科技导报, 2008, 26(6): 84
6 Lu K Y, Zhang Y Y, Yang X P, et al. Research development of interlaminar reinforcing and toughening technique of carbon fiber composites [J]. Aeronaut. Manuf. Technol., 2020, 63(18): 14
6 卢康逸, 张月义, 杨小平 等.碳纤维复合材料层间增强增韧技术研究进展 [J]. 航空制造技术, 2020, 63(18): 14
7 Zhao Z H, Sun J S, Guo Y, et al. Improving interlaminar toughness of carbon fiber/phthalonitrile composite via polyimide [J]. Acta Mater. Compos. Sin., 2021, 38(3): 732
7 赵泽华, 孙劲松, 郭 颖 等.聚酰亚胺颗粒层间增韧碳纤维/邻苯二甲腈树脂复合材料 [J]. 复合材料学报, 2021, 38(3): 732
8 Yi X S, Xu Y H, Cheng Q F, et al. Interlaminar toughness and characteristic morphology of laminated graphite composites interlaminar-toughened [J]. Chin. J. Mater. Res., 2008, 22(4): 337
8 益小苏, 许亚洪, 程群峰 等.层间韧化的碳纤维复合材料层压板的力学性能 [J]. 材料研究学报, 2008, 22(4): 337
9 İnal O, Akbolat M Ç, Soutis C, et al. Toughening mechanisms in cost-effective carbon-epoxy laminates with thermoplastic veils: mode-I and in-situ SEM fracture characterisation [J]. Int. J. Lightweight Mater. Manuf., 2021, 4(1): 50
10 Quan D, Bologna F, Scarselli G, et al. Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils [J]. Compos. Sci. Technol., 2020, 191: 108065
doi: 10.1016/j.compscitech.2020.108065
11 Quan D, Bologna F, Scarselli G, et al. Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils [J]. Composites, 2020, 128A: 105642
12 Wong D W Y, Zhang H, Bilotti E, et al. Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves [J]. Composites, 2017, 101A: 151
13 Wang W T, Yu H N, Potter K, et al. Effect of the characteristics of nylon microparticles on Mode-I interlaminar fracture toughness of carbon-fibre/epoxy composites [J]. Composites, 2020, 138A: 106073
14 Huang Y, Liu W S, Jiang Q R, et al. Interlaminar fracture toughness of carbon-fiber-reinforced epoxy composites toughened by poly(phenylene oxide) particles [J]. ACS Appl. Polym. Mater., 2020, 2(8): 3114
doi: 10.1021/acsapm.0c00285
15 Cheng C, Zhang C Y, Zhou J L, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films [J]. Compos. Sci. Technol., 2019, 183: 107827
doi: 10.1016/j.compscitech.2019.107827
16 Yao J W, Liu M Y, Niu Y F. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites [J]. Acta Mater. Compos. Sin., 2019, 36(5): 1083
16 姚佳伟, 刘梦瑶, 牛一凡.PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能 [J]. 复合材料学报, 2019, 36(5): 1083
17 Kang S F, Li J, Qu L, et al. Preparation and mechanical properties of taekifying-toughening carbon fiber composites by copolyester non-woven veils [J]. Compos. Sci. Eng., 2020, (4): 53
17 康少付, 李 进, 瞿 立 等.共聚酯无纺布定型-增韧碳纤维复合材料的制备及力学性能 [J]. 复合材料科学与工程, 2020, (4): 53
18 Cheng C, Chen Z G, Huang Z, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs [J]. Composites, 2020, 129A: 105696
19 Beylergil B, Tanoğlu M, Aktaş E.Effect of polyamide-6,6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites [J]. Compos. Struct., 2018, 194: 21
doi: 10.1016/j.compstruct.2018.03.097
20 Hansen C M.The three dimensional solubility parameter-key to paint component affinities: I. Solvents, plasticizers, polymers, and resins [J]. J. Paint. Technol., 1967, 39(505): 104
21 Hansen C M.The three dimensional solubility parameter-key to paint component affinities: solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. III. Independent cal-culation of the parameter components [J]. J. Paint. Technol., 1967, 39(505): 505
22 Hansen C M. Hansen Solubility Parameters: A User's Handbook [M]. Boca Raton: CRC Press, 2007
23 Kılıçoğlu M, Bat E, Gündüz G, et al. Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms [J]. Composites, 2022, 158A: 106982
24 He Y X, Li Q, Kuila T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications [J]. Composites, 2013, 44B(1) : 533
25 Wong D W Y, Lin L, McGrail P T, et al. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres [J]. Composites, 2010, 41A(6) : 759
26 Yao J W, Zhang T, Niu Y F.Effect of curing time on phase morphology and fracture toughness of PEK-C film interleaved carbon fibre/epoxy composite laminates [J]. Compos. Struct., 2020, 248: 112550
doi: 10.1016/j.compstruct.2020.112550
27 Quan D, Wang G L, Zhao G Q, et al. On the interlayer toughening of carbon fibre/epoxy composites using surface-activated ultra-thin PEEK films [J]. Compos. Struct., 2023, 303: 116309
doi: 10.1016/j.compstruct.2022.116309
28 Zhang D J, Bao J W, Zhong X Y, et al. Preparation and properties of carbon fiber reinforced epoxy resin Composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric [J]. Acta Mater. Compos. Sin., 2022, 39(8): 3767
28 张代军, 包建文, 钟翔屿 等.聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征 [J]. 复合材料学报, 2022, 39(8): 3767
29 Zhou J L, Zhang C Y, Cheng C, et al. Synergetic improvement of interlaminar fracture toughness in carbon fiber/epoxy composites interleaved with PES/PEK-C hybrid nanofiber veils [J]. Adv. Fiber Mater., 2022, 4(5): 1081
doi: 10.1007/s42765-022-00160-9
30 Sun Z Y, Xu L, Chen Z G, et al. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone [J]. Polymers, 2019, 11(3): 461
doi: 10.3390/polym11030461
31 Jiang M Q, Liu Y, Cheng C, et al. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone [J]. Polym. Test., 2018, 69: 302
doi: 10.1016/j.polymertesting.2018.05.039
[1] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 董哲瑄, 陈平, 刘兴达. 等离子体处理对CF/PI复合材料高温界面性能的影响[J]. 材料研究学报, 2023, 37(12): 900-906.