Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 423-429    DOI: 10.11901/1005.3093.2023.328
  研究论文 本期目录 | 过刊浏览 |
二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能
郭智楠1, 赵强1,2(), 李淑英1,3, 王俊丽1,3, 许琳1, 尚建鹏1,2, 郭永1,2
1.山西大同大学化学与化工学院 大同 037009
2.山西省清洁能源材料联合实验室 大同 037009
3.煤基生态碳汇技术教育部工程研究中心 大同 037009
Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles
GUO Zhinan1, ZHAO Qiang1,2(), LI Shuying1,3, WANG Junli1,3, XU Lin1, SHANG Jianpeng1,2, GUO Yong1,2
1.School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
2.Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong 037009, China
3.Shanxi Province Union laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, China
引用本文:

郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
Zhinan GUO, Qiang ZHAO, Shuying LI, Junli WANG, Lin XU, Jianpeng SHANG, Yong GUO. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. Chinese Journal of Materials Research, 2024, 38(6): 423-429.

全文: PDF(5550 KB)   HTML
摘要: 

用沉淀法将ZnNiAl-LDH掺杂在Cu2O中制备出一种可见光光催化剂。用这种催化剂可见光降解四环素(TC),研究其光催化性能。结果表明,这种ZnNiAl-LDH/Cu2O的催化活性比纯Cu2O的更高,掺杂7%ZnNiAl-LDH的ZnNiAl-LDH/Cu2O光催化剂其降解活性最优,在50 min内能将TC降解89.6%。这表明,ZnNiAl-LDH/Cu2O催化剂对TC的光催化降解活性较高。7%ZnNiAl-LDH/Cu2O具有较高光降解效率的原因是,在Cu2O与ZnNiAl-LDH之间高效的界面电荷转移和协同作用提高了光生电子空穴对的分离效率。

关键词 无机非金属材料沉淀法Cu2OZnNiAl-LDH四环素光降解性能    
Abstract

A highly active and stable visible light photocatalyst of composite ZnNiAl-LDH/Cu2O was successfully prepared by using co-precipitation method to depositing two-dimensional layered ZnNiAl-ZnNiAl-LDH on Cu2O particles. The photocatalytic activity of the prepared composite catalyst was evaluated by the degradation of tetracycline (TC) under visible light. It is found that the developed ZnNiAl-LDH/Cu2O exhibited higher activity than the pure Cu2O, while the ZnNiAl-LDH/Cu2O photocatalyst doped with 7% of ZnNiAl-LDH exhibited the highest photodegradation activity, by which 89.6% of TC was decomposed within 50 minutes. The ZnNiAl-LDH/Cu2O photocatalyst present considerably high photocatalytic degradation activities on TC. The high photodegradation efficiency of 7%ZnNiAl-LDH/Cu2O could be ascribed to the efficient interfacial charge transfer at the composite and the synergistic effect between Cu2O and ZnNiAl-LDH, which resulted in the enhanced separation efficiency of photogenerated electron-hole pairs.

Key wordsinorganic non-metallic materials    precipitation method    cuprous oxide    ZnNiAl-LDH    tetracycline    photodegradation property
收稿日期: 2023-07-03     
ZTFLH:  O643  
基金资助:国家自然科学基金(21908135);山西省自然科学基金(201901D111308,201901D211435,201801D221057);山西省留学回国人员科技活动项目择优资助(2019-20);山西大同大学博士科研启动基金(2018-B-01,2020-B-02);山西大同大学研究生创新基金(21CX22,22CX17);山西省大学生创新创业训练计划项目(20220807,2016172)
通讯作者: 赵 强,教授,zhaoqiangtyla@126.com,研究方向为光电降解污染物
Corresponding author: ZHAO Qiang, Tel: 15934234565, E-mail: zhaoqiangtyla@126.com
作者简介: 郭智楠,女,1998年生,硕士生
图1  Cu2O和7%ZnNiAl-LDH/Cu2O的XRD谱
图2  7%ZnNiAl-LDH/Cu2O的SEM照片
图3  7%ZnNiAl-LDH/Cu2O的TEM照片和HRTEM图像
图4  7%ZnNiAl-LDH/Cu2O的XPS谱
图5  Cu2O和7% ZnNiAl-LDH/Cu2O的UV-vis DRS谱和(αhν)2与光子能量(hν)的关系
SampleSurface area / m2·g-1Pore volume / cm3·g-1Area pore size / nm
ZnNiAl-LDH67.420.434.723
7% ZnNiAl-LDH/Cu2O82.810.523.928
Cu2O8.09--
表1  ZnNiAl-LDH和7% ZnNiAl-LDH/Cu2O的孔结构参数
图6  ZnNiAl-LDH和7% ZnNiAl-LDH/Cu2O氮气吸附-脱附等温线
图7  催化剂样品的光电流响应曲线和电化学阻抗谱图
图8  Cu2O和不同比例ZnNiAl-LDH/Cu2O光催化剂的光催化性能曲线
图9  7%ZnNiAl-LDH/Cu2O在甲醇体系(DMPO-·O2-)和水体系(DEPO-·OH)辐射5 min后的DMPO自旋捕获EPR谱
图10  可见光下ZnNiAl-LDH/Cu2O光催化反应机理
1 Zheng W, Can L, Kazunari D. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting [J]. Chem. Soc. Rev, 2018, 48(7): 2109
2 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
2 彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
3 Schwitzgebel J, Ekerdt J G, Gerischer H, et al. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions [J]. J. Phys. Chem. C, 1995, 99(15):5633
4 Yu Y, Bao H B. Comparative research on solar photovoltaic market deployment policies [J]. Sci. Technol. Manag. Res., 2012, 32(15): 21
4 余 杨, 包海波. 太阳能光伏市场应用政策的国别比较研究 [J]. 科技管理研究, 2012, 32(15): 21
5 Matsumoto H, Hasuo M, Kono S, et al. Revived interest on yellow-exciton series in Cu2O-an experimental aspect [J]. Solid State Commun, 1996, 97(2): 125
6 Ma H M, Zhu Z L. Status and prospect of heterogeneous photocatalysis technology of semiconductor [J]. Environ. Prot. Sci., 2006, (01): 28
6 马红梅, 朱志良. 半导体多相光催化技术研究现状及发展趋势 [J]. 环境保护科学, 2006, (01): 28
7 Wang H J, Li Z. Heterogenous photocatalytic oxidation technology for semiconductors [J]. Modern Chemical Industry, 2002 (2): 56
7 王红娟, 李 忠. 半导体多相光催化氧化技术 [J]. 现代化工, 2002, (2): 56
8 Wei M Z, Huo J Z, Lun N, et al. A novel semiconductor photocatalyst—nano cuprous oxide [J]. Materials Reports, 2007, (6): 130
8 魏明真, 霍建振, 伦 宁 等. 一种新型的半导体光催化剂——纳米氧化亚铜 [J]. 材料导报, 2007, (6): 130
9 Long D, Zhou J L, Shi H M, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism [J]. Chem. Ind. Eng. Prog., 2019, 38(6):2756
9 龙 丹, 周俊伶, 时洪民 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展 [J]. 化工进展, 2019, 38(6): 2756
10 Jongh P, Vanmaekelbergh D, Kelly J J. Cu2O: a catalyst for the photochemical decomposition of water? [J]. Chem Commun, 1999, 0(12): 1069
11 Toe C Y, Zheng P Z, Wu H, et al. Photocorrosion of cuprous oxide in hydrogen production: rationalising self‐oxidation or self‐reduction [J]. Angew. Chem., 2018, 130(41): 13801
12 Karthikeyan S, Kumar S, Durndell L, et al. Size-dependent visible light photocatalytic performance of Cu2O nanocubes [J]. C. & Chem, 2018, 10(16): 3554
13 Wu C. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst [J]. Angew. Chem, 2013, 52(42):9023
14 Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis [J]. Sol. Energy Mater Sol.Cells, 2003, 77(3): 229
15 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
doi: 10.11901/1005.3093.2019.146
15 谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
16 Wu Z, Cheung G, Wang J. Wavelength dependent photochemical charge transfer at the Cu2O-BiVO4 particle interface-evidence for tandem excitation [J]. Chem. Commun, 2018, 54: 9023
17 Guangliang C, Chuanhai X, Pinghua Z, et al. In situ electrodeposition of a Cu2O/SnO2 periodical heterostructure film for photosensor applications [J]. Phys. chem. chem. phys, 2016, 18(16): 10918
doi: 10.1039/c6cp00772d pmid: 27040464
18 Song J, Rodenbough P, Xu W. Reduction of nano Cu2O: crystallite-size dependent and the effect of nano-ceria support [J]. J Phys Chem C, 2015, 119(31): 17667
19 Wang B, An W, Liu L, et al. Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light [J]. Rsc Adv, 2015, 5(5): 3224
20 Wang L, Zhao F, Han Q, et al. Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses [J]. Nanoscale, 2015, 7(21): 9694
21 Qin Y L, Yang Y, Zhao P Y, et al. Microstructures and photocatalytic properties of BiOCl-RGO nanocomposites prepared by two-step hydrothermal method [J]. Chin. J. Mater. Res., 2020, 34(02): 92
21 秦艳利, 杨 艳, 赵鹏羽 等. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02): 92
22 Huang Z J. Frabication of layered double hydroxides (LDHs) composites and their photocatalytic properties study [D]. Guangzhou: South China University of Technology, 2014
22 黄柱坚. 层状双氢氧化物(LDHs)复合材料的构建及光催化性能研究 [D]. 广州: 华南理工大学, 2014
23 Kulamani P, Minarva S, Lagnamayee M. Incorporation of Fe3+ into Mg/Al layered double hydroxide framework: effects on textural properties and photocatalytic activity for H2 generation [J]. J. Mater. Chem. A, 2012, 22(15):7350
24 Zhi Y, Li Y, Zhang Q, et al. ZnO nanoparticles immobilized on flaky layered double hydroxides as photocatalysts with enhanced adsorptivity for removal of acid red G [J]. Langmuir, 2010, 26(19):15546
doi: 10.1021/la1019313 pmid: 20825202
[1] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[3] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[4] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[5] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[6] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[8] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[9] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[10] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[11] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[12] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[14] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.