|
|
石墨烯基吸波复合材料研究进展 |
徐东卫1,2, 王瑞琪1, 陈平1( ) |
1 大连理工大学化工学院 精细化工国家重点实验室 大连 116024 2 郑州航空工业管理学院材料学院 郑州 450046 |
|
Research Progress of Graphene-based Absorbing Composites |
XU Dongwei1,2, WANG Ruiqi1, CHEN Ping1( ) |
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2 School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China |
引用本文:
徐东卫, 王瑞琪, 陈平. 石墨烯基吸波复合材料研究进展[J]. 材料研究学报, 2024, 38(1): 1-13.
Dongwei XU,
Ruiqi WANG,
Ping CHEN.
Research Progress of Graphene-based Absorbing Composites[J]. Chinese Journal of Materials Research, 2024, 38(1): 1-13.
1 |
Qiu H F, Zhu X Y, Chen P, et al. Synthesis of ternary core-shell structured ZnOC@CoC@PAN for high-performance electromagnetic absorption [J]. J. Alloys Compd., 2021, 868: 159260
doi: 10.1016/j.jallcom.2021.159260
|
2 |
Zhan Y F, Xia L, Yang H, et al. Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique [J]. Carbon, 2021, 175: 101
doi: 10.1016/j.carbon.2020.12.080
|
3 |
Li S S, Tang X W, Zhang Y W, et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption [J]. ACS Appl. Mater. Interfaces, 2022, 14: 8297
doi: 10.1021/acsami.1c23439
|
4 |
Zhang Y L, Ruan K P, Shi X T, et al. Ti3C2T x /rGO porous composite films with superior electromagnetic interference shielding performances [J]. Carbon, 2021, 175: 271
doi: 10.1016/j.carbon.2020.12.084
|
5 |
Liu Q H, Cao Q, Bi H, et al. CoNi@SiO2@TiO2 and CoNi@Air@-TiO2 microspheres with strong wideband microwave absorption [J]. Adv. Mater., 2016, 28: 486
doi: 10.1002/adma.v28.3
|
6 |
Zhao H Q, Cheng Y, Zhang Y N, et al. Core-shell hybrid nanowires with Co nanoparticles wrapped in N-doped porous carbon for lightweight microwave absorption [J]. Dalton Trans., 2019, 48: 15263
doi: 10.1039/c9dt03447a
pmid: 31580365
|
7 |
Wen C Y, Li X, Zhang R X, et al. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2T x MXene@Ni microspheres [J]. ACS Nano, 2022, 16: 1150
doi: 10.1021/acsnano.1c08957
|
8 |
Zhu X Y, Qiu H F, Chen P.A modified graphitic carbon nitride (MCN)/Fe3O4 composite as a super electromagnetic wave absorber [J]. J. Mater. Chem., 2021, 9A: 23643
|
9 |
Chen C, Xi J B, Zhou E Z, et al. Porous graphene microflowers for high-performance microwave absorption [J]. Nano-Micro Lett., 2018, 10: 26
doi: 10.1007/s40820-017-0179-8
pmid: 30393675
|
10 |
Zhi D D, Li T, Li J Z, et al. A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption [J]. Composites, 2021, 211B: 108642
|
11 |
Yuan H R, Yan F, Li C Y, et al. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material [J]. ACS Appl. Mater. Interfaces, 2018, 10: 1399
doi: 10.1021/acsami.7b15559
|
12 |
Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
doi: 10.1016/j.carbon.2017.01.036
|
13 |
Zhang Z, Wang J D, Shang J, et al. A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption [J]. Small, 2023, 19: 2205716
doi: 10.1002/smll.v19.4
|
14 |
Wang H Y, Sun X B, Yang S H, et al. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption [J]. Nano-Micro Lett., 2021, 13: 206
doi: 10.1007/s40820-021-00727-y
|
15 |
Wang Y H, Han X J, Xu P, et al. Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorp-tion [J]. Chem. Eng. J., 2019, 372: 312
doi: 10.1016/j.cej.2019.04.153
|
16 |
Zhao H Q, Cheng Y, Liu W, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption [J]. Nano-Micro Lett., 2019, 11: 24
|
17 |
Zhao T B, Jia Z R, Zhang Y, et al. Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption [J]. Small, 2023, 19: 2206323
doi: 10.1002/smll.v19.6
|
18 |
Chu H R, Zeng Q, Chen P, et al. Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method [J]. J. Alloys Compd., 2017, 719: 296
doi: 10.1016/j.jallcom.2017.05.199
|
19 |
Xu Y X, Gao W W, Gao C.A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption [J]. Adv. Funct. Mater., 2022, 32: 2204591
doi: 10.1002/adfm.v32.42
|
20 |
Huang M Q, Wang L, Pei K, et al. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption [J]. Small, 2020, 16: 2000158
doi: 10.1002/smll.v16.14
|
21 |
Zhao B, Hamidinejad M, Wang S, et al. Advances in electromagnetic shielding properties of composite foams [J]. J. Mater. Chem., 2021, 9A: 8896
|
22 |
Wang L, Zhang J, Wang M, et al. Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption [J]. J. Mater. Chem., 2019, 7C: 11167
|
23 |
Cao W Q, Wang X X, Yuan J, et al. Temperature dependent microwave absorption of ultrathin graphene composites [J]. J. Mater. Chem., 2015, 3C: 10017
|
24 |
Zheng X L, Feng J, Zong Y, et al. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers [J]. J. Mater. Chem., 2015, 3C: 4452
|
25 |
Wang L, Huang Y, Li C, et al. Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance [J]. Phys. Chem. Chem. Phys., 2015, 17: 5878
doi: 10.1039/c4cp05556j
pmid: 25630384
|
26 |
Wang Y, Gao X, Wu X M, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber [J]. Chem. Eng. J., 2019, 375: 121942
doi: 10.1016/j.cej.2019.121942
|
27 |
Liu P B, Huang Y, Yan J, et al. Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties [J]. ACS Appl. Mater. Interfaces, 2016, 8: 5536
doi: 10.1021/acsami.5b10511
|
28 |
Yan F, Guo D, Zhang S, et al. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property [J]. Nanoscale, 2018, 10: 2697
doi: 10.1039/C7NR08305J
|
29 |
Yan F, Zhang S, Zhang X, et al. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers [J]. J. Mater. Chem., 2018, 6C: 12781
|
30 |
Yan F, Kang J Y, Zhang S, et al. Enhanced electromagnetic wave absorption induced by void spaces in hollow nanoparticles [J]. Nanoscale, 2018, 10: 18742
doi: 10.1039/c8nr07338d
pmid: 30272082
|
31 |
Zhang C, Wang B C, Xiang J Y, et al. Microwave absorption properties of CoS2 nanocrystals embedded into reduced graphene oxide [J]. ACS Appl. Mater. Interfaces, 2017, 9: 28868
doi: 10.1021/acsami.7b06982
|
32 |
Li Q Q, Tan J, Wu Z C, et al. Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band [J]. Carbon, 2023, 201: 150
doi: 10.1016/j.carbon.2022.08.090
|
33 |
Zeng Q, Xiong X H, Chen P, et al. Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance [J]. J. Mater. Chem., 2016, 4C: 10518
|
34 |
Zeng Q, Chen P, Yu Q, et al. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties [J]. Sci. Rep., 2017, 7: 8388
doi: 10.1038/s41598-017-08293-3
pmid: 28814735
|
35 |
Zeng Q, Xu D W, Chen P, et al. 3D graphene-Ni microspheres with excellent microwave absorption and corrosion resistance properties [J]. J. Mater. Sci. Mater. Electron., 2018, 29: 2421
doi: 10.1007/s10854-017-8161-2
|
36 |
Li T, Zhi D D, Chen Y, et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption [J]. Nano Res., 2020, 13: 477
doi: 10.1007/s12274-020-2632-0
|
37 |
Cui Y H, Yang K, Wang J Q, et al. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave [J]. Carbon, 2021, 172: 1
doi: 10.1016/j.carbon.2020.09.093
|
38 |
Ye X C, Gao Q, He E Y, et al. Graphene/carbonyl iron powder composite microspheres enhance electromagnetic absorption of 3D printing composites [J]. J. Alloys Compd., 2023, 937: 168443
doi: 10.1016/j.jallcom.2022.168443
|
39 |
Cai Y F, Cheng Y, Wang Z H, et al. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption [J]. Chem. Eng. J., 2023, 457: 141102
doi: 10.1016/j.cej.2022.141102
|
40 |
Liu Z H, Fan Y H, Liu Z G, et al. Wrinkled 3D MoS2/RGO/NC composite microspheres: optimal composition and microwave absorbing properties [J]. Composites, 2022, 161A: 107119
|
41 |
Wang W T, Sun J W, Xu W Y, et al. Development of wrinkled reduced graphene oxide wrapped polymer-derived carbon microspheres as viable microwave absorbents via a charge-driven self-assembly strategy [J]. J. Colloid Interface Sci., 2023, 630: 34
doi: 10.1016/j.jcis.2022.09.144
|
42 |
Tang P P, Deng Z M, Zhang Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor [J]. Adv. Funct. Mater., 2022, 32: 2112156
doi: 10.1002/adfm.v32.28
|
43 |
Hou Y L, Sheng Z Z, Fu C, et al. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption [J]. Nat Commun, 2022, 13: 1227
doi: 10.1038/s41467-022-28906-4
pmid: 35264594
|
44 |
Zheng X H, Tang J H, Wang P, et al. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding [J]. J. Colloid Interface Sci., 2022, 628: 994
doi: 10.1016/j.jcis.2022.08.019
|
45 |
Sheng A, Yang Y Q, Yan D X, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption [J]. Carbon, 2020, 167: 530
doi: 10.1016/j.carbon.2020.05.107
|
46 |
Chen Y W, Zhang H Y, Zeng G X.Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure [J]. Carbon, 2018, 140: 494
doi: 10.1016/j.carbon.2018.09.014
|
47 |
Liu P B, Zhang Y Q, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 368: 285
doi: 10.1016/j.cej.2019.02.193
|
48 |
Chen H H, Huang Z Y, Huang Y, et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands [J]. Carbon, 2017, 124: 506
doi: 10.1016/j.carbon.2017.09.007
|
49 |
Zhang Y, Huang Y, Zhang T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam [J]. Adv. Mater., 2015, 27: 2049
doi: 10.1002/adma.v27.12
|
50 |
Xu D W, Liu J L, Chen P, et al. In situ deposition of α-Co nanoparticles on three-dimensional nitrogen-doped porous graphene foams as microwave absorbers [J]. J. Mater. Sci. Mater. Electron., 2019, 30: 13412
doi: 10.1007/s10854-019-01709-y
|
51 |
Xu D W, Yang S, Chen P, et al. 3D nitrogen-doped porous magnetic graphene foam-supported Ni nanocomposites with superior microwave absorption properties [J]. J. Alloys Compd., 2019, 782: 600
doi: 10.1016/j.jallcom.2018.12.239
|
52 |
Xu D W, Xiong X H, Chen P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties [J]. J. Magn. Magn. Mater., 2019, 469: 428
doi: 10.1016/j.jmmm.2018.09.019
|
53 |
Huang Z Y, Chen H H, Huang Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam [J]. Adv. Funct. Mater., 2018, 28: 1704363
doi: 10.1002/adfm.v28.2
|
54 |
Zhang M M, Fang X K, Zhang Y H, et al. Ultralight reduced graphene oxide aerogels prepared by cation-assisted strategy for excellent electromagnetic wave absorption [J]. Nanotechnology, 2020, 31: 275707
doi: 10.1088/1361-6528/ab851d
|
55 |
Wang X Y, Lu Y K, Zhu T, et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption [J]. Chem. Eng. J., 2020, 388: 124317
doi: 10.1016/j.cej.2020.124317
|
56 |
Zhao B, Li Y, Ji H Y, et al. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption [J]. Carbon, 2021, 176: 411
doi: 10.1016/j.carbon.2021.01.136
|
57 |
Zhao H B, Cheng J B, Zhu J Y, et al. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness [J]. J. Mater. Chem., 2019, 7C: 441
|
58 |
Xu D W, Chen P, Chen G Z, et al. Self-assembly synthesis and microwave absorption properties of magnetic functionalized graphene aerogels [J]. Chin. Sci. Bull., 2022, 67: 437
|
58 |
徐东卫, 陈 平, 陈冠震 等.磁功能化石墨烯气凝胶自组装合成及吸波性能 [J]. 科学通报, 2022, 67: 437
|
59 |
Xu D W, Liu J L, Chen P, et al. In situ growth and pyrolysis synthesis of super-hydrophobic graphene aerogels embedded with ultrafine β-Co nanocrystals for microwave absorption [J]. J. Mater. Chem., 2019, 7C: 3869
|
60 |
Xu D W, Yang S, Chen P, et al. Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis [J]. Carbon, 2019, 146: 301
doi: 10.1016/j.carbon.2019.02.005
|
61 |
Cheng Z, Wang R F, Cao Y S, et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel [J]. Adv. Funct. Mater., 2022, 32: 2205160
doi: 10.1002/adfm.v32.40
|
62 |
Zhang X J, Wang G S, Cao W Q, et al. Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties [J]. RSC Adv., 2014, 4(38): 19594
doi: 10.1039/C4RA02040E
|
63 |
Ren F, Zhu G M, Xie J Q, et al. Cyanate ester filled with graphene nanosheets and multi-walled carbon nanotubes as a microwave absorber [J]. J. Polym. Res., 2015, 22(5): 89
doi: 10.1007/s10965-015-0738-y
|
64 |
Chen J P, Jia H, Liu Z, et al. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption [J]. Carbon, 2020, 164: 59
doi: 10.1016/j.carbon.2020.03.049
|
65 |
Lv X J, Duan Y P, Chen G Q.Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres [J]. Constr. Build. Mater., 2018, 162: 280
doi: 10.1016/j.conbuildmat.2017.12.047
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|