Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 1-13    DOI: 10.11901/1005.3093.2023.114
  综述 本期目录 | 过刊浏览 |
石墨烯基吸波复合材料研究进展
徐东卫1,2, 王瑞琪1, 陈平1()
1 大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2 郑州航空工业管理学院材料学院 郑州 450046
Research Progress of Graphene-based Absorbing Composites
XU Dongwei1,2, WANG Ruiqi1, CHEN Ping1()
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2 School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
引用本文:

徐东卫, 王瑞琪, 陈平. 石墨烯基吸波复合材料研究进展[J]. 材料研究学报, 2024, 38(1): 1-13.
Dongwei XU, Ruiqi WANG, Ping CHEN. Research Progress of Graphene-based Absorbing Composites[J]. Chinese Journal of Materials Research, 2024, 38(1): 1-13.

全文: PDF(14834 KB)   HTML
摘要: 

电子信息技术的迅速发展,致使电磁污染及干扰问题愈加严重,研制具有“宽、薄、轻、强”综合优异性能的吸波材料显得尤为重要。石墨烯材料因其具有轻质、高导电、大比表面积、强介电损耗等优点,但其阻抗匹配性能较差,损耗机制单一。对其进行异质元素掺杂或进行形貌结构设计,可有效改善其阻抗失配问题。本文基于电磁波吸收理论,阐述了不同维度石墨烯基吸波复合材料的研究进展,详细讨论了不同石墨烯基吸波复合材料的性能和吸波机理。还讨论了石墨烯吸波材料领域目前研究工作中存在的一些不足,最后针对石墨烯基吸波材料未来的研究方向和发展前景进行了展望。

关键词 评述石墨烯微波吸收结构调控多功能吸波材料阻抗匹配    
Abstract

With the rapid development of electronic information technology, electromagnetic pollution and interference have become more and more serious. It is particularly important to develop microwave absorption materials with comprehensive excellent performance of "wide, thin, light and strong". Graphene materials have the advantages of light weight, high conductivity, large specific surface area and strong dielectric loss, however, the impedance matching performance is poor and the loss mechanism is single. Interestingly, the impedance mismatch can be effectively improved by doping heterogeneous elements or designing morphology and structure. Herein, based on electromagnetic wave absorption theory, this paper describes the research progress of different dimensions of graphene-based absorbing materials, and discusses the properties and microwave absorbing mechanism of different graphene-based absorbing materials in detail. The shortcomings of current research work in the field of graphene absorbing materials are also discussed. Finally, the future research direction and development prospect of graphene-based absorbing materials are prospected.

Key wordsreview    graphene    microwave absorption    texture regulation    multifunctional absorbing material    impedance matching
收稿日期: 2023-02-04     
ZTFLH:  TB332  
基金资助:国家重大研究计划(2019-ZD-380-12);兴辽英才计划(XLYC1802085);大连市科技创新基金重大项目(2019J11CY007);中央高校基本科研基金(DUT18GF107);航空科学基金(20173754009);河南省自然科学基金(232300420332);河南省高等学校重点科研项目(23A430006)
通讯作者: 陈平,教授,pchen@dlut.edu.cn,研究方向为高性能高分子材料与先进聚合物基复合材料结构与功能一体化设计与制备
Corresponding author: CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn
作者简介: 徐东卫,男,1990年生,博士
图1  电磁波的传输及和吸波材料作用的示意图
图2  三种类型吸波性能测量技术示意图[21]
图3  疏水Fe3O4-石墨烯杂化物的制备流程示意图[24]
图4  CoS2/rGO纳米杂化物的结构和性能[31]
图5  Air@rGO€Fe3O4空心微球的制备示意图[33]
图6  空心氧化石墨烯气凝胶微球和球中球氧化石墨烯气凝胶微球的示意图[36]
图7  f-GO、f-GO纤维和还原f-GO纤维的制备示意图[42]
图8  皮芯型石墨烯/MXene纤维气凝胶的制备及其应用[44]
图9  三维“泡沫型”结构石墨烯的电磁波损耗模型及其典型性能对比[49]
图10  3D磁性石墨烯泡沫复合材料的制备工艺流程[50]
图11  CNT/RGO/CoNi链杂化气凝胶制备工艺示意图[56]
图12  复合气凝胶开/关微波吸收模式示意图[61]
1 Qiu H F, Zhu X Y, Chen P, et al. Synthesis of ternary core-shell structured ZnOC@CoC@PAN for high-performance electromagnetic absorption [J]. J. Alloys Compd., 2021, 868: 159260
doi: 10.1016/j.jallcom.2021.159260
2 Zhan Y F, Xia L, Yang H, et al. Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique [J]. Carbon, 2021, 175: 101
doi: 10.1016/j.carbon.2020.12.080
3 Li S S, Tang X W, Zhang Y W, et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption [J]. ACS Appl. Mater. Interfaces, 2022, 14: 8297
doi: 10.1021/acsami.1c23439
4 Zhang Y L, Ruan K P, Shi X T, et al. Ti3C2T x /rGO porous composite films with superior electromagnetic interference shielding performances [J]. Carbon, 2021, 175: 271
doi: 10.1016/j.carbon.2020.12.084
5 Liu Q H, Cao Q, Bi H, et al. CoNi@SiO2@TiO2 and CoNi@Air@-TiO2 microspheres with strong wideband microwave absorption [J]. Adv. Mater., 2016, 28: 486
doi: 10.1002/adma.v28.3
6 Zhao H Q, Cheng Y, Zhang Y N, et al. Core-shell hybrid nanowires with Co nanoparticles wrapped in N-doped porous carbon for lightweight microwave absorption [J]. Dalton Trans., 2019, 48: 15263
doi: 10.1039/c9dt03447a pmid: 31580365
7 Wen C Y, Li X, Zhang R X, et al. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2T x MXene@Ni microspheres [J]. ACS Nano, 2022, 16: 1150
doi: 10.1021/acsnano.1c08957
8 Zhu X Y, Qiu H F, Chen P.A modified graphitic carbon nitride (MCN)/Fe3O4 composite as a super electromagnetic wave absorber [J]. J. Mater. Chem., 2021, 9A: 23643
9 Chen C, Xi J B, Zhou E Z, et al. Porous graphene microflowers for high-performance microwave absorption [J]. Nano-Micro Lett., 2018, 10: 26
doi: 10.1007/s40820-017-0179-8 pmid: 30393675
10 Zhi D D, Li T, Li J Z, et al. A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption [J]. Composites, 2021, 211B: 108642
11 Yuan H R, Yan F, Li C Y, et al. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material [J]. ACS Appl. Mater. Interfaces, 2018, 10: 1399
doi: 10.1021/acsami.7b15559
12 Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
doi: 10.1016/j.carbon.2017.01.036
13 Zhang Z, Wang J D, Shang J, et al. A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption [J]. Small, 2023, 19: 2205716
doi: 10.1002/smll.v19.4
14 Wang H Y, Sun X B, Yang S H, et al. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption [J]. Nano-Micro Lett., 2021, 13: 206
doi: 10.1007/s40820-021-00727-y
15 Wang Y H, Han X J, Xu P, et al. Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorp-tion [J]. Chem. Eng. J., 2019, 372: 312
doi: 10.1016/j.cej.2019.04.153
16 Zhao H Q, Cheng Y, Liu W, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption [J]. Nano-Micro Lett., 2019, 11: 24
17 Zhao T B, Jia Z R, Zhang Y, et al. Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption [J]. Small, 2023, 19: 2206323
doi: 10.1002/smll.v19.6
18 Chu H R, Zeng Q, Chen P, et al. Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method [J]. J. Alloys Compd., 2017, 719: 296
doi: 10.1016/j.jallcom.2017.05.199
19 Xu Y X, Gao W W, Gao C.A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption [J]. Adv. Funct. Mater., 2022, 32: 2204591
doi: 10.1002/adfm.v32.42
20 Huang M Q, Wang L, Pei K, et al. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption [J]. Small, 2020, 16: 2000158
doi: 10.1002/smll.v16.14
21 Zhao B, Hamidinejad M, Wang S, et al. Advances in electromagnetic shielding properties of composite foams [J]. J. Mater. Chem., 2021, 9A: 8896
22 Wang L, Zhang J, Wang M, et al. Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption [J]. J. Mater. Chem., 2019, 7C: 11167
23 Cao W Q, Wang X X, Yuan J, et al. Temperature dependent microwave absorption of ultrathin graphene composites [J]. J. Mater. Chem., 2015, 3C: 10017
24 Zheng X L, Feng J, Zong Y, et al. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers [J]. J. Mater. Chem., 2015, 3C: 4452
25 Wang L, Huang Y, Li C, et al. Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance [J]. Phys. Chem. Chem. Phys., 2015, 17: 5878
doi: 10.1039/c4cp05556j pmid: 25630384
26 Wang Y, Gao X, Wu X M, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber [J]. Chem. Eng. J., 2019, 375: 121942
doi: 10.1016/j.cej.2019.121942
27 Liu P B, Huang Y, Yan J, et al. Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties [J]. ACS Appl. Mater. Interfaces, 2016, 8: 5536
doi: 10.1021/acsami.5b10511
28 Yan F, Guo D, Zhang S, et al. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property [J]. Nanoscale, 2018, 10: 2697
doi: 10.1039/C7NR08305J
29 Yan F, Zhang S, Zhang X, et al. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers [J]. J. Mater. Chem., 2018, 6C: 12781
30 Yan F, Kang J Y, Zhang S, et al. Enhanced electromagnetic wave absorption induced by void spaces in hollow nanoparticles [J]. Nanoscale, 2018, 10: 18742
doi: 10.1039/c8nr07338d pmid: 30272082
31 Zhang C, Wang B C, Xiang J Y, et al. Microwave absorption properties of CoS2 nanocrystals embedded into reduced graphene oxide [J]. ACS Appl. Mater. Interfaces, 2017, 9: 28868
doi: 10.1021/acsami.7b06982
32 Li Q Q, Tan J, Wu Z C, et al. Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band [J]. Carbon, 2023, 201: 150
doi: 10.1016/j.carbon.2022.08.090
33 Zeng Q, Xiong X H, Chen P, et al. Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance [J]. J. Mater. Chem., 2016, 4C: 10518
34 Zeng Q, Chen P, Yu Q, et al. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties [J]. Sci. Rep., 2017, 7: 8388
doi: 10.1038/s41598-017-08293-3 pmid: 28814735
35 Zeng Q, Xu D W, Chen P, et al. 3D graphene-Ni microspheres with excellent microwave absorption and corrosion resistance properties [J]. J. Mater. Sci. Mater. Electron., 2018, 29: 2421
doi: 10.1007/s10854-017-8161-2
36 Li T, Zhi D D, Chen Y, et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption [J]. Nano Res., 2020, 13: 477
doi: 10.1007/s12274-020-2632-0
37 Cui Y H, Yang K, Wang J Q, et al. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave [J]. Carbon, 2021, 172: 1
doi: 10.1016/j.carbon.2020.09.093
38 Ye X C, Gao Q, He E Y, et al. Graphene/carbonyl iron powder composite microspheres enhance electromagnetic absorption of 3D printing composites [J]. J. Alloys Compd., 2023, 937: 168443
doi: 10.1016/j.jallcom.2022.168443
39 Cai Y F, Cheng Y, Wang Z H, et al. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption [J]. Chem. Eng. J., 2023, 457: 141102
doi: 10.1016/j.cej.2022.141102
40 Liu Z H, Fan Y H, Liu Z G, et al. Wrinkled 3D MoS2/RGO/NC composite microspheres: optimal composition and microwave absorbing properties [J]. Composites, 2022, 161A: 107119
41 Wang W T, Sun J W, Xu W Y, et al. Development of wrinkled reduced graphene oxide wrapped polymer-derived carbon microspheres as viable microwave absorbents via a charge-driven self-assembly strategy [J]. J. Colloid Interface Sci., 2023, 630: 34
doi: 10.1016/j.jcis.2022.09.144
42 Tang P P, Deng Z M, Zhang Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor [J]. Adv. Funct. Mater., 2022, 32: 2112156
doi: 10.1002/adfm.v32.28
43 Hou Y L, Sheng Z Z, Fu C, et al. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption [J]. Nat Commun, 2022, 13: 1227
doi: 10.1038/s41467-022-28906-4 pmid: 35264594
44 Zheng X H, Tang J H, Wang P, et al. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding [J]. J. Colloid Interface Sci., 2022, 628: 994
doi: 10.1016/j.jcis.2022.08.019
45 Sheng A, Yang Y Q, Yan D X, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption [J]. Carbon, 2020, 167: 530
doi: 10.1016/j.carbon.2020.05.107
46 Chen Y W, Zhang H Y, Zeng G X.Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure [J]. Carbon, 2018, 140: 494
doi: 10.1016/j.carbon.2018.09.014
47 Liu P B, Zhang Y Q, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 368: 285
doi: 10.1016/j.cej.2019.02.193
48 Chen H H, Huang Z Y, Huang Y, et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands [J]. Carbon, 2017, 124: 506
doi: 10.1016/j.carbon.2017.09.007
49 Zhang Y, Huang Y, Zhang T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam [J]. Adv. Mater., 2015, 27: 2049
doi: 10.1002/adma.v27.12
50 Xu D W, Liu J L, Chen P, et al. In situ deposition of α-Co nanoparticles on three-dimensional nitrogen-doped porous graphene foams as microwave absorbers [J]. J. Mater. Sci. Mater. Electron., 2019, 30: 13412
doi: 10.1007/s10854-019-01709-y
51 Xu D W, Yang S, Chen P, et al. 3D nitrogen-doped porous magnetic graphene foam-supported Ni nanocomposites with superior microwave absorption properties [J]. J. Alloys Compd., 2019, 782: 600
doi: 10.1016/j.jallcom.2018.12.239
52 Xu D W, Xiong X H, Chen P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties [J]. J. Magn. Magn. Mater., 2019, 469: 428
doi: 10.1016/j.jmmm.2018.09.019
53 Huang Z Y, Chen H H, Huang Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam [J]. Adv. Funct. Mater., 2018, 28: 1704363
doi: 10.1002/adfm.v28.2
54 Zhang M M, Fang X K, Zhang Y H, et al. Ultralight reduced graphene oxide aerogels prepared by cation-assisted strategy for excellent electromagnetic wave absorption [J]. Nanotechnology, 2020, 31: 275707
doi: 10.1088/1361-6528/ab851d
55 Wang X Y, Lu Y K, Zhu T, et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption [J]. Chem. Eng. J., 2020, 388: 124317
doi: 10.1016/j.cej.2020.124317
56 Zhao B, Li Y, Ji H Y, et al. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption [J]. Carbon, 2021, 176: 411
doi: 10.1016/j.carbon.2021.01.136
57 Zhao H B, Cheng J B, Zhu J Y, et al. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness [J]. J. Mater. Chem., 2019, 7C: 441
58 Xu D W, Chen P, Chen G Z, et al. Self-assembly synthesis and microwave absorption properties of magnetic functionalized graphene aerogels [J]. Chin. Sci. Bull., 2022, 67: 437
58 徐东卫, 陈 平, 陈冠震 等.磁功能化石墨烯气凝胶自组装合成及吸波性能 [J]. 科学通报, 2022, 67: 437
59 Xu D W, Liu J L, Chen P, et al. In situ growth and pyrolysis synthesis of super-hydrophobic graphene aerogels embedded with ultrafine β-Co nanocrystals for microwave absorption [J]. J. Mater. Chem., 2019, 7C: 3869
60 Xu D W, Yang S, Chen P, et al. Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis [J]. Carbon, 2019, 146: 301
doi: 10.1016/j.carbon.2019.02.005
61 Cheng Z, Wang R F, Cao Y S, et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel [J]. Adv. Funct. Mater., 2022, 32: 2205160
doi: 10.1002/adfm.v32.40
62 Zhang X J, Wang G S, Cao W Q, et al. Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties [J]. RSC Adv., 2014, 4(38): 19594
doi: 10.1039/C4RA02040E
63 Ren F, Zhu G M, Xie J Q, et al. Cyanate ester filled with graphene nanosheets and multi-walled carbon nanotubes as a microwave absorber [J]. J. Polym. Res., 2015, 22(5): 89
doi: 10.1007/s10965-015-0738-y
64 Chen J P, Jia H, Liu Z, et al. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption [J]. Carbon, 2020, 164: 59
doi: 10.1016/j.carbon.2020.03.049
65 Lv X J, Duan Y P, Chen G Q.Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres [J]. Constr. Build. Mater., 2018, 162: 280
doi: 10.1016/j.conbuildmat.2017.12.047
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[4] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[7] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[8] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[9] 黄欢, 张迅韬, 杨尚科, 肖刘鑫, 张兆鑫, 严磊, 蔺海兰, 卞军, 陈代强. 氧化石墨烯/苯甲酸钠复合成核剂协同改性PA6纳米复合材料的性能[J]. 材料研究学报, 2022, 36(6): 416-424.
[10] 何颖, 李超群, 陈小立, 龙芝梅, 赖嘉琪, 邵斌, 马毅龙, 陈登明, 董季玲. 高性能Sm2Fe17N x 粉体制备的研究进展[J]. 材料研究学报, 2022, 36(5): 321-331.
[11] 刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 332-342.
[12] 邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
[13] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[14] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[15] 曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.