|
|
高温氦离子辐照对钨表面形貌的影响 |
崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜( ) |
大连理工大学电气工程学院 大连 116024 |
|
Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten |
CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na( ) |
School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
Yunqiu CUI,
Chunjie NIU,
Jianhua LV,
Weiyuan NI,
Dongping LIU,
Na LU.
Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten[J]. Chinese Journal of Materials Research, 2024, 38(6): 437-445.
1 |
Wu C H, Alessandrini C, Bonal J P, et al. Progress of the European R&D on plasma-wall interactions, neutron effects and tritium removal in ITER plasma facing materials [J]. Fusion Eng. Des., 2001, 56-57: 179
|
2 |
Behrisch R, Federici G, Kukushkin A, et al. Material erosion at the vessel walls of future fusion devices [J]. J. Nucl. Mater., 2003, 313-316: 388
|
3 |
Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S957
|
4 |
Neu R, Rohde V, Geier A, et al. Plasma operation with tungsten tiles at the central column of ASDEX Upgrade [J]. J. Nucl. Mater., 2001, 290-293: 206
|
5 |
De Temmerman G, Bystrov K, Doerner R P, et al. Helium effects on tungsten under fusion-relevant plasma loading conditions [J]. J. Nucl. Mater., 2013, 438 suppl: S78
|
6 |
Parish C M, Hijazi H, Meyer H M, et al. Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes [J]. Acta Mater., 2014, 62: 173
|
7 |
Meyer F W, Hijazi H, Bannister M E, et al. He-ion and self-atom induced damage and surface-morphology changes of a hot W target [J]. Phys. Scr., 2014, T159: 014029
|
8 |
Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention [J]. J. Nucl. Mater., 2013, 442(suppl.1-suppl.3) : S267
|
9 |
Gasparyan Y, Efimov V, Bystrov K. Helium concentration measurement in tungsten fuzz-like nanostructures by means of thermal desorption spectroscopy [J]. Nucl. Fusion, 2016, 56(5): 054002
|
10 |
Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
|
11 |
Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
|
12 |
Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48(3): 035001
|
13 |
Baldwin M J, Lynch T C, Doerner R P, et al. Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: a study of ion energy threshold and early stage growth [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S104
|
14 |
De Temmerman G, Bystrov K, Zielinski J J, et al. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions [J]. J. Vac. Sci. Technol., 2012, 30A: 041306
|
15 |
Wright G M, Brunner D, Baldwin M J, et al. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices [J]. J. Nucl. Mater., 2013, 438 suppl: S84
|
16 |
Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4(10): 104002
|
17 |
Liu L. Research on tungsten material irradiation damage induced by low-energy and high-flux hydrogen/helium ions [D]. Dalian: Dalian University of Technology, 2019
|
17 |
刘 璐. 低能强流氢氦离子辐照下钨材料损伤研究 [D]. 大连: 大连理工大学, 2019
|
18 |
Woller K B, Whyte D G, Wright G M. Impact of helium ion energy modulation on tungsten surface morphology and nano-tendril growth [J]. Nucl. Fusion, 2017, 57(6): 066005
|
19 |
Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-333: 1029
|
20 |
Cipiti B B, Kulcinski G L. Helium and deuterium implantation in tungsten at elevated temperatures [J]. J. Nucl. Mater., 2005, 347(3): 298
|
21 |
Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
|
22 |
Cui Y Q, Fan H Y, Niu C J, et al. Stress-driven surface swell and exfoliation of copper as the plasma-facing materials in NBI ICP source [J]. Plasma Phys. Control. Fusion, 2021, 64(1): 015002
|
23 |
Zhang Y, Li X P, Niu C J, et al. W nano-fuzz growth by high-flux He ion irradiation with their energy above 300 eV [J]. Nucl. Instrum. Methods Phys. Sec. B: Beam Interact. Mater. Atoms, 2022, 520: 22
|
24 |
Niu C J, Zhang Y, Cui Y Q, et al. Effect of temperature on the growth and surface bursting of He nano-bubbles in W under fusion-relevant He ion irradiations [J]. Fusion Eng. Des., 2021, 163: 112159
|
25 |
Zhao J T, Meng X, Guan X C, et al. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation [J]. J. Nucl. Mater., 2018, 503: 198
|
26 |
Li Y P, Ran G, Liu X Y, et al. In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing [J]. Chin. Phys. B, 2021, 30(8): 086109
|
27 |
Alimov V K, Tyburska-Püschel B, Hatano Y, et al. The effect of displacement damage on deuterium retention in ITER-grade tungsten exposed to low-energy, high-flux pure and helium-seeded deuterium plasmas [J]. J. Nucl. Mater., 2012, 420: 370
|
28 |
Roszell J P T. The effect of ion energy and substrate temperature on deuterium trapping in tungsten [D]. Toronto: University of Toronto, 2012
|
29 |
Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
|
29 |
曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
|
30 |
Dechaumphai E, Barton J L, Tesmer J R, et al. Near-surface thermal characterization of plasma facing components using the 3-omega method [J]. J. Nucl. Mater., 2014, 455(1-3): 56
|
31 |
Armstrong D E J, Edmondson P D, Roberts S G. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten [J]. Appl. Phys. Lett., 2013, 102(25): 251901
|
32 |
Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
|
33 |
Miyazawa T, Hwang T, Tsuchida K, et al. Effects of helium on mechanical properties of tungsten for fusion applications [J]. Nucl. Mater. Energy, 2018, 15: 154
|
34 |
Hu R H, Yang Z, Lei Q J, et al. Effect of helium ions irradiation on stability of nano-tungsten whiskers [J]. Chin. J. Mater. Res., 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
|
34 |
胡瑞航, 杨 贞, 雷齐俊 等. 氦离子辐照对钨纳米丝稳定性的影响 [J]. 材料研究学报, 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
|
35 |
Fan H Y, Niu C J, LI X P, et al. W fuzz layers: very high resistance to sputtering under fusion-relevant He+ irradiations [J]. Plasma Sci. Technol., 2022, 24(1): 015601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|