Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 401-409    DOI: 10.11901/1005.3093.2023.125
  研究论文 本期目录 | 过刊浏览 |
铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响
边鹏博1,2, 韩修柱3, 张峻凡1, 朱士泽1(), 肖伯律1, 马宗义1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.沈阳理工大学材料科学与工程学院 沈阳 110159
3.北京空天飞行器总体设计部 北京 100094
Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite
BIAN Pengbo1,2, HAN Xiuzhu3, ZHANG Junfan1, ZHU Shize1(), XIAO Bolv1, MA Zongyi1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
3.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
引用本文:

边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
Pengbo BIAN, Xiuzhu HAN, Junfan ZHANG, Shize ZHU, Bolv XIAO, Zongyi MA. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. Chinese Journal of Materials Research, 2024, 38(6): 401-409.

全文: PDF(26584 KB)   HTML
摘要: 

将不同粒径(13 μm和32 μm) 的Al粉在不同温度用粉末冶金加热挤压工艺制备出复合材料15%SiC/2009A1,用光学显微镜(OM)、扫描电镜(SEM)、电子探针(EPMA)和电子万能试验机对其表征,研究了Al粉的粒径对其微观组织和力学性能的影响。结果表明,用小粒径Al粉在任一温度热压制备的复合材料其强塑性都优于用大粒径Al粉的材料。其原因有:一,大粒径Al粉使SiC颗粒分布不均匀;二,在用大粒径Al粉制备的复合材料中Cu、Mg元素扩散不均匀,与引入的Fe、O元素生成大尺寸难溶相;三,用大粒径Al粉制备的复合材料中SiC颗粒与铝基体的界面结合较弱(尤其是热压温度较低时),在拉伸变形过程中大量SiC颗粒与铝基体脱粘。用两种粒径Al粉制备的复合材料,随着热压温度的变化其断裂方式不同。用小粒径Al粉在不同温度热压制备的复合材料,其断裂方式均为铝基体的韧性撕裂和SiC颗粒断裂。用大粒径Al粉制备的复合材料低温热压时其断裂方式为SiC-Al界面脱粘,热压温度提高可改善界面结合,使断裂方式变为铝基体的韧性撕裂和SiC颗粒断裂。热压温度为580℃用两种粒径Al粉制备的复合材料力学性能最佳,尤其是用小粒径Al粉制备的材料其抗拉强度、屈服强度分别达到556 MPa、381 MPa,延伸率达到9.2%。

关键词 复合材料力学性能粉末冶金铝粉粒径热压温度    
Abstract

Hot pressed Al-based composites of 15% SiC/2009A1 (volume fraction) were prepared by powder metallurgy method. The effect of the variation of Al powder sizes (13 μm, 32 μm) and temperatures (560oC, 580oC, 600oC) on their microstructure and mechanical property was studied using optical microscopy (OM), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and tensile tests. The results show that the composite prepared with small Al powders has higher strength and ductility than that prepared with large Al powders. The reason could be attributed to the following three aspects. First, large Al powders result in the uneven distribution of SiC particles in the matrix. Secondly, in the composites prepared with large Al powders, Cu and Mg spread unevenly and which then react with the extrinsic contaminants such as Fe and O, forming large-sized insoluble phases. Thirdly, in the composite prepared with large Al powders, the bonding between SiC particles and the aluminum matrix is weak, which is particularly obvious when the hot pressing temperature is low, resulting in debonding of SiC-Al interface during tensile tests. The fracture mechanism of the composites prepared with the two Al powders was analyzed. At all hot-pressing temperatures, the composites prepared with small Al powders are fractured due to the tearing of the Al-matrix and fracture of SiC partculates. However, for the composite prepared with large Al powders, SiC particles and aluminum matrix tend to debond when hot pressing at low temperature, while the interfacial bonding is improved with the increase of hot pressing temperature. When hot pressing at 580oC, the mechanical properties of the composites are the best, especially for that withsmall Al powders. Correspondingly, the tensile strength and yield strength reach 556 MPa and 381 MPa respectively, and the elongation reaches 9.2%.

Key wordscomposite    mechanical property    powder metallurgy    aluminum powder size    hot pressing temperature
收稿日期: 2023-02-14     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划课题(2022YFB3707403);中国科学院金属研究所创新基金(2023-PY14)
通讯作者: 朱士泽,助理研究员,szzhu16s@imr.ac.cn,研究方向为金属基复合材料
Corresponding author: ZHU Shize, Tel: (024)83971800, E-mail: szzhu16s@imr.ac.cn
作者简介: 边鹏博,男,1997年生,硕士
图1  不同粒径的Al粉与Cu、Mg、SiC粉末机械混合后的形貌
图2  用不同粒径的Al粉在不同热压温度下制备的15%SiC/2009Al复合材料热压态的OM图
图3  用不同粒径的Al粉在不同热压温度下制备的15%SiC/2009Al复合材料在T4态的OM图
图4  用不同粒径的Al粉在不同热压温度下制备的15%SiC/2009Al复合材料在T4态的SEM图像
图5  用不同粒径的Al粉在不同热压温度下制备的15%SiC/2009Al复合材料在T4态的XRD谱
图6  用不同粒径的Al粉在560℃热压温度下制备的15%SiC/2009Al复合材料在T4态的元素分布
图7  用不同粒径的Al粉在600℃热压温度制备的15%SiC/2009Al复合材料在T4态的元素分布
Aluminum powder size / μmHot pressing temperature / oCYield strength / MPa

Tensile

strength / MPa

Elongation / %Density / g·cm-3Relative density / %
13560391(6.9)562(5.3)8.72.82699.9
30~40560378(7.5)506(8.0)3.52.82199.7
13580381(0.8)556(1.9)9.22.82399.8
30~40580336(4.2)508(1.6)7.82.81599.5
13600374(2.9)542(2.8)8.22.82299.7
30~40600334(4.9)506(4.1)7.82.81099.3
表1  用不同粒径的铝粉在不同热压温度下制备的15%SiC/2009Al复合材料T4态的拉伸性能和致密度
图8  用不同粒径的Al粉在不同热压温度下制备的15%SiC/2009Al复合材料的断口形貌
图9  用大粒径Al粉在600℃热压制备的复合材料的断口形貌
1 Milind S M, Uddha M S. An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods [J]. Mater. Today, 2021, 44: 376
2 Huang G Q, Wu J, Hou W T, et al. A novel two-step method to prepare fine-grained SiC/Al-Mg-Sc-Zr nanocomposite: Processing, microstructure and mechanical properties [J]. Mater. Sci. & Eng.: A, 2021, 823: 141764
3 Nam D H, Kim Y K, Cha S I, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al-Cu composites [J]. Carbon, 2012, 50(13): 4809
4 Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2012, 50(5): 1843
5 Styles M J, Hutchinson C R, Chen Y, et al. The coexistence of two S (Al2CuMg) phases in Al-Cu-Mg alloys [J]. Acta Mater., 2013, 60(20): 6940
6 Song M, Xiao D H. Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites [J]. Mater. Sci. & Eng.: A, 2008, 474(1-2): 371
7 Singh K K, Singh S, Shrivastava A K. Comparison of wear and friction behavior of aluminum matrix alloy (Al 7075) and silicon carbide based aluminum metal matrix composite under dry condition at different sliding distance [J]. Mater. Today, 2016, 4: 8960
8 Chen M Q, Bai Y L, Zhang Z F, et al. Research progress on preparation of SiC/Al for electronic packaging by liquid infiltration [J]. Mater. Sci. Forum, 2021, 1035: 906
9 Liu G F, Chen T J, Wang Z J. Effects of solid solution treatment on microstructure and mechanical properties of SiCp/2024 Al composite: A comparison with 2024 Al alloy [J]. Mater. Sci. & Eng.: A, 2021, 817: 141413
10 Lee J C, Shim J H, Lee H I, et al. Methodology to design the interfaces in SiC-Al composites [J]. Metall. Mater. Trans, 2001(A32): 1541
11 Xie J P, Wang H, Ang A Q, et al. Mechanical properties and microstructure of SiCp/2024Al composites prepared by vacuum hot pressing [J]. Trans. Mater. & Heat Treat., 2015, 36(1): 23
12 Karthik G M, Panikar S, Ram G, et al. Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles [J]. Mater. Sci. & Eng.: A, 2017, 679:193
13 Xiao L, Guo Q. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Mater. Sci. & Eng.: A, 2018, 711: 643
14 Wang Z G, Li C P, Wang H, et al. Aging behavior of Nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Meter. Sci. & Technol., 2016, 32(10): 5
15 Arvind M, Kaushik M P, Mayur A, et al. Effect of mixing method and particle size on hardness and compressive strength of aluminum based metal matrix composite prepared through powder metallurgy route [J]. J. Mater. Res. & Technol., 2022, 18: 282
16 Jin P, Xiao B L, Wang Q Z, et al. Effect of hot extrusion on interfacial microstructure and tensile properties of SiCp/2009Al composites fabricated at different hot pressing temperatures [J]. J. Meter. Sci. & Technol., 2011, 27(6): 518
17 Liu Q, Qi F, Wang Q, et al. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites [J]. Mater. Sci. & Eng.: A, 2018, 731: 351
18 Pal S, Mitra R, Bhanuprasad V V. Aging behaviour of Al-Cu-Mg alloy-SiC composites [J]. Mater. Sci. & Eng.: A, 2008, 480(1-2): 496
19 Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mater. Sci. & Eng.: A, 2019, 753: 146
20 Wei S H, Nie J H, Liu Y Q, et al. Effect of particle size on fracture toughness of 15%SiCp/2009Al composites [J]. Chin. J. Rare Metal., 2020, 44(2): 147
20 魏少华, 聂俊辉, 刘彦强 等. 颗粒尺寸对15%SiCp/2009Al复合材料断裂韧性的影响 [J]. 稀有金属., 2020, 44(2): 147
21 Bhanu P V, Ramakrishnan P. Clustering probability maps for private metal matrix composites [J]. Scr. Mater., 2000, 43: 835
22 Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio [J]. Acta Mater., 2006, 54: 157
23 Jin P, Xiao B L, Wang Q Z, et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites [J]. Mater. Sci. & Eng.: A, 2011, 528(3): 1504
24 Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sinica, 2012, 48(2): 135
24 张 琪, 王全兆, 肖伯律 等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报. 2012, 48(2): 135
25 Jin P, Xiao B L, Wang Q Z, et al. Effect of hot pressing temperature on microstructure and mechanical properties of SiC particle reinforced aluminum matrix composites [J]. Acta Metall. Sinica, 2011, 47(3): 298
25 金 鹏, 肖伯律, 王全兆 等. 热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响 [J]. 金属学报, 2011, 47(3): 298
26 Xing Y, Li N Y, Li C J, et al. Effects of size and oxidation treatment for SiC particles on the microstructures and mechanical properties of SiCp/Al composites prepared by powder metallurgy [J]. Mater. Sci. & Eng.: A, 2022, 851
27 Wang Z, Min S, Chao S, et al. Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al-Cu alloy composites [J]. Mater. Sci. & Eng.: A, 2010, 527(24-25): 6537
[1] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[2] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[3] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[4] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[5] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[6] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[7] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[8] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[9] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[10] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[11] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[12] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[13] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[14] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[15] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.