Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 791-800    DOI: 10.11901/1005.3093.2022.391
  研究论文 本期目录 | 过刊浏览 |
石墨烯调控3D打印功能钛的组织和性能
王春锦, 陈文革(), 亢宁宁, 杨涛
西安理工大学材料科学与工程学院 西安 710048
Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing
WANG Chunjin, CHEN Wenge(), KANG Ningning, YANG Tao
Xi'an University of Technology, School of Material Science and Engineering, Xi'an 710048, China
引用本文:

王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
Chunjin WANG, Wenge CHEN, Ningning KANG, Tao YANG. Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing[J]. Chinese Journal of Materials Research, 2023, 37(10): 791-800.

全文: PDF(12465 KB)   HTML
摘要: 

用选区激光熔化(SLM)技术制备多孔石墨烯/钛复合材料,研究了石墨烯(Gr)作为增强相对其微观结构、力学性能以及抗腐蚀性能的影响。结果表明:用SLM制备的多孔钛由较小的等轴晶组成,石墨烯加入使其晶粒尺寸进一步减小,石墨烯没有在Ti基体中团聚,部分石墨烯与Ti原位生成的TiC产生了弥散强化。多孔Gr/Ti复合材料的压缩曲线由弹性变形阶段、应力平台阶段和致密化阶段组成,其硬度、抗压强度和压缩率分别为503HV、317.38 MPa和42%;其抗腐蚀性能高于纯钛,腐蚀电位为-0.325 V,腐蚀电流密度为3.28×10-7 A·cm-2

关键词 金属材料多孔钛石墨烯激光选区熔化组织与性能    
Abstract

Porous graphene /Ti(Gr/Ti) composites were fabricated by selective laser melting (SLM) technique with the mixture of Ti powder and graphene as raw material, and the effect of graphene (Gr) addition on the microstructure, mechanical properties and corrosion resistance of porous Gr/Ti composites were investigated. The results show that the macrostructure of the porous Gr/Ti composite is not significantly different from the designed structure, but the porosity is lower than the designed structure. The porous pure titanium prepared by SLM consists of small equiaxed grains, and the grain size of which is further reduced after the addition of graphene, while the graphene uniformly distributed in the Ti-matrix. A small portion of graphene reacts with Ti-matrix leading to the formation of TiC, as a result, the in-situ generated TiC as second phase particles can reinforce the base metal through dispersion strengthening. The compression stress-strain curves of the porous Gr/Ti composite display elastic deformation stage, stress plateau stage and densification stage. The hardness, compressive strength and compression ratio of the porous Gr/Ti composite were 503HV, 317.38 MPa and 42%, respectively. Its corrosion potential and the corrosion current density were -0.325 V and 3.28×10-7 A·cm-2 respectively, indicating a better corrosion resistance in the comparison to the one of pure Ti.

Key wordsmetallic meterials    porous Ti    graphene    selective laser melting    microstructure and properties
收稿日期: 2022-07-18     
ZTFLH:  TG665  
基金资助:西安市科技攻关项目(23ZDCYJSGG0042-2002)
通讯作者: 陈文革,教授, wgchen001@263.net,研究方向为功能材料、先进粉末冶金及新金属材料
Corresponding author: CHEN Wenge, Tel: (029)82312383, E-mail: wgchen001@263.net
作者简介: 王春锦,男,1995年生,硕士
Alloy elementFeOHNCTi
Value0.0400.0610.0010.0100.00899.880
表1  纯钛粉的化学成分
图1  钛粉和石墨烯纳米片的SEM形貌

Purity

/ %

Thickness

/ nm

Conductivity

/ S·m-1

Oxygen content

/ %

Sulphur content

/ %

Impurity content

/ %

specific surface area

/ m2·g-1

>9530~501050.500.500.01100~300
表2  石墨烯纳米片的基本性能
图2  多孔骨架模型
Laser power / WLaser scan speed / mm·s-1Layer thicknessmm / μmHatch spacing / μmBeam diameter / μm
70 W800256045
表3  选区激光熔化工艺参数
CaCl2 / gKCl / gNaCl / gH2O / L
0.250.4291
表4  Ringers模拟体液的成分
图3  不同方向3D打印多孔钛和石墨烯/多孔钛复合材料的宏观形貌
图4  不同方向3D打印的多孔Ti及Gr/Ti的孔结构SEM形貌
图5  致密Ti、多孔Ti和多孔Gr/Ti的显微组织
图6  Ti粉、石墨烯片和不同钛材料的XRD谱和Raman光谱
图7  多孔Gr/Ti复合材料的TEM形貌和SAED图
图8  三种钛材料的压缩应力应变曲线
图9  多孔纯钛、Gr/Ti复合材料和致密钛的压缩断口形貌
图10  多孔Gr/Ti复合材料和多孔Ti的阳极极化曲线和阻抗谱
1 He X, Wang X F, Wang X L, et al. Research progress in the preparation process of porous titanium materials [J]. Light Ind. Sci. Technol., 2020, 36(9): 69
1 何 喜, 王晓峰, 王小炼 等. 多孔钛材料制备工艺研究进展 [J]. 轻工科技, 2020, 36(9): 69
2 Singla A K, Banerjee M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process 2021, 64: 161
3 Ats A, Ytb C, Pbp C, et al. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 254
doi: 10.1016/j.ijrmhm.2018.10.004
4 Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
5 Zhang M L, Chi X T, Zhou C S, et al. Preparation and properties of porous Ti-Nb alloy materials [J]. Kang T'ieh Fan T'ai, 2021, 42(6): 84
5 张美丽, 叱小彤, 周春生 等. 多孔Ti-Nb合金材料的制备与性能研究 [J]. 钢铁钒钛, 2021, 42(6): 84
6 Chen M, Zhang E, Lan Z. Microstructure, mechanical properties, bio-corrosion properties and antibacterial property of Ti-Ag sintered alloys [J]. Mater. Sci. Eng., C, 2016, 62: 350
7 Chandra Y, Adhikaris S, Saaavedra F E I, et al. Advances in finite element modelling of graphene and associated nanostructures [J]. Mater. Sci. Eng.: R: Reports, 2020, 140: 100544
doi: 10.1016/j.mser.2020.100544
8 Hong J J, He X L, Fu C X, et al. Research progress of graphene reinforced composites [J]. Chem. Propellants Polym. Mater., 2020, 18(6): 11
8 洪机剑, 何小玲, 傅楚娴 等. 石墨烯增强复合材料研究进展 [J]. 化学推进剂与高分子材料, 2020, 18(6): 11
9 Luo J M, Wu X H, Zang J P, et al. Preparation and mechanical properties of GNPs-Cu/Ti6Al4V composites[J]. Chin. J. of Nonferrous Met., 2017, 27(9): 1803
9 罗军明, 吴小红, 张剑平 等. 石墨烯-Cu/Ti6Al4V复合材料的制备及力学性能 [J]. 中国有色金属学报, 2017, 27(9): 1803
10 Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium martix nanocomposite [J]. China Surf. Eng., 2015, 28(06): 127
10 胡增荣, 童国权, 张 超 等. 激光烧结石墨烯钛纳米复合材料及其耐腐蚀性能 [J]. 中国表面工程, 2015, 28(6): 127
11 Mu X N, Cai H N, Zhang H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite [J]. Mater. Des., 2017, 140: 431
doi: 10.1016/j.matdes.2017.12.016
12 Yan Q, ChenN B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting [J]. Carbon, 2020, 174(12): 451
doi: 10.1016/j.carbon.2020.12.047
13 Lin K, Fang Y, Gu D, et al. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability [J]. Adv. Powder Technol., 2021, 32(5): 426
14 Chen H, Mi G B, Li P J, et al. Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy [J]. J. Mater. Eng., 2019, 47(9): 8
14 陈 航, 弭光宝, 李培杰 等. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响 [J]. 材料工程, 2019, 47(9): 8
15 Jiang H, Ler J X, XIE C Y. Electrochemical corrosion behaviors of ultrafine-grained commercially pure titanium processed by rolling [J]. J. Plast. Eng., 2016, 23(6): 187
15 江鸿, 雷君相, 谢超英. 轧制变形超细晶纯钛的电化学腐蚀行为 [J]. 塑性工程学报, 2016, 23(6): 187
16 Sun L F, Yang Y Q, Yang Z. Study on surface roughness of selective laser meiting Ti6Al4V based on power characteristics [J]. Chin. J. Lasers, 2016, 43(7): 104
16 孙健峰, 杨永强, 杨洲. 基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究 [J]. 中国激光, 2016, 43(7): 104
17 Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices [J]. Acta Phys. Sin., 2017, 66(21): 177
17 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件 [J]. 物理学报, 2017, 66(21): 177
18 Wu Y L, Wang Y, Qiao L Y, et al. Study on structures and properties of hexagonal porous Ti6Al4V ally via selective laser melting [J]. J. Funct. Mater., 2018, 49(6): 6080
18 吴艳琳, 王勇, 乔丽英, 姜定成. 选区激光熔化成型正六方柱体多孔TC4合金结构及力学性能研究 [J]. 功能材料, 2018, 49(6): 6080
doi: 10.3969/j.issn.1001-9731.2018.06.012
19 Chou X M. Study on powder metallurgy titanium alloy and porous titanium [D]. Changsha: Central South University, 2007
19 丑晓明. 粉末冶金钛合金及多孔钛研究 [D]; 长沙: 中南大学, 2007
20 Li H L, Jia D C, Yang Z H, et al. Research progress on selective laser melting 3D printing of titanium alloys and titanium matrix composites [J]. Mater. Sci. Technol., 2019, 27(2): 1
doi: 10.1179/026708311X12911114483692
20 李海亮, 贾德昌, 杨治华 等. 选区激光熔化3D打印钛合金及其复合材料研究进展 [J]. 材料科学与工艺, 2019, 27(2): 1
21 Sun F, Wang K X, Yang H, et al. Investigation of graphene reinforced titanium matrix composites preparation process and properties [J]. Titanium Ind. Prog., 2019, 36(1): 8
21 孙 峰, 王凯旋, 杨辉 等. 石墨烯增强钛基复合材料制备工艺与性能研究 [J]. 钛工业进展, 2019, 36(1): 8
22 Hu Z R, Tong G Q, Zhang C, et al. Corrosion behavior of laser sintered graphene reinforced titanium matrix nanocomposites [J]. China Surf. Eng., 2015, 28(6): 127
23 Li H, Huang B, Fan S, et al. Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting [J]. Rare Met. Mater. Eng., 2013, 42(2): 209
24 Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing [J]. Int. J. Precis. Eng. Man., 2014, 15(6): 1235
doi: 10.1007/s12541-014-0462-2
25 Singla A K, Baner J M, Sharma A, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments [J]. J. Manuf. Process, 2021, 64: 161
doi: 10.1016/j.jmapro.2021.01.009
26 Bayode B L, Tefeo M L, Tayler T, et al. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]. Mater. Sci. Eng., B, 2022, 283: 115826
27 Zhang F, Liu S, Zhao P, et al. Titanium/nanodiamond nanocomposites: Effect of nanodiamond on microstructure and mechanical properties of titanium [J]. Mater. Des., 2017, 131: 144
doi: 10.1016/j.matdes.2017.06.015
28 Bai H Q, Shang Z, Cai X L, et al. Research progress of in-situ titanium carbide particulate reinforced titanium composite material [J]. Hot Working Technol., 2019, 48(4): 1
28 白海强, 商 昭, 蔡小龙 等. 原位制备碳化钛颗粒增强钛基复合材料研究进展 [J]. 热加工工艺, 2019, 48(4): 1
29 Wang X J, Wang X C, Xi B Y I, et al. Impact of powder characteristics on formation properties of selective laser melted Al-Si alloy [J]. Shandong Sci., 2016, 29(2):30
doi: 10.3976/j.issn.1002-4026.2016.02.007
29 王小军, 王修春, 伊希斌 等. 粉体特征对选区激光熔化Al-Si合金成型性能的影响 [J]. 山东科学, 2016, 29(2):30
30 Zong X W, Zhang J, Lu B H, et al. Numerical analysis and microstructure and properties of Hastelloy X and Ti6Al4V alloy formed by selective laser melting [J]. Appl. Laser, 2021, 41(4): 745
30 宗学文, 张 健, 卢秉恒 等. 选区激光熔化制备Hastelloy X和Ti6Al4V合金数值分析及组织性能 [J]. 应用激光, 2021, 41(4): 745
31 Gu D, Meng G, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67(2): 185
doi: 10.1016/j.scriptamat.2012.04.013
32 Ph A, Zz A, Wd B, et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting [J]. Composites, Part B, 2021, 225: 109305
33 Chen S Y, Huang J C, Pan C T, et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting [J]. J. Alloys Compd., 2017, 713: 248
doi: 10.1016/j.jallcom.2017.04.190
34 Ji X M, Xiang S, Shen T, et al. Relation Between Solution Aging Parameters and Microstructure and Properties of TA12 Ti Alloy [J]. Hot Working Technol., 2015, 44(20): 172
34 冀宣名, 向 嵩, 沈 涛 等. TA12钛合金固溶时效参数与组织和性能的关系 [J]. 热加工工艺, 2015, 44(20): 172
35 Wang W, Zhou H X, Wang Q J. Tribological properties of graphene reinforced titanium matrix composites [J]. Ordnance Mater. Sci. Eng., 2019, 42(1): 26
35 王 伟, 周海雄, 王庆娟 等. 石墨烯增强钛基复合材料的摩擦学性能研究 [J]. 兵器材料科学与工程, 2019, 42(1): 26
36 Su S L, Rao Q H, He Y H. Compression mechanical properties of FeAl intermetallic compound porous material [J]. Rare Met. Mater. Eng., 2018, 47(08): 2453
37 Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting [J]. Mater. Sci. Eng. A Struct. Mater., 2016, 670: 264
doi: 10.1016/j.msea.2016.06.013
38 Jia P, Xu X T, Huang F, et al. Effect of pore structure on mechanical properties and fracture mechanism of porous materials [J].J. Northeast.Univ., Nat. Sci., 2021, 42(12): 1768
38 贾 蓬, 徐雪桐, 黄菲 等. 多孔材料的孔结构对其力学性能及破裂机制的影响 [J]. 东北大学学报(自然科学版), 2021, 42(12): 1768
39 Qiao J C, Xi Z P, Tang H P, et al. Review on compressive behavior of porous metals [J]. Rare Met. Mater. Eng., 2010, 39(3): 561
39 乔吉超, 奚正平, 汤慧萍 等. 金属多孔材料压缩行为的评述 [J]. 稀有金属材料与工程, 2010, 39(3): 561
40 GAO R N, Xiong Y Z, Zhang H, et al. Mechanical properties and biocompatibilities of radially graded porous titanium/tantalum fabricated by selective laser melting [J]. Rare Met. Mater. Eng., 2021, 50(1): 249
40 高芮宁, 熊胤泽, 张 航 等. SLM制备径向梯度多孔钛/钽的力学性能及生物相容性 [J]. 稀有金属材料与工程, 2021, 50(1): 249
41 Wu L, Fu T T, Yu X H, et al. Anodic oxidation characteristic of commercial pure titanium and its corrosion resistance [J]. Hot Working Technol., 2017, 46(4): 161
41 伍 俐, 付天琳, 于晓华 等. 工业纯钛的阳极氧化特性及其抗腐蚀性能研究 [J]. 热加工工艺, 2017, 46(4): 161
42 Li Y S. Study of antiseptic properties and biocompatibility of metallic biological [J]. Chin. J. Pharm. Anal., 2006, 26(7): 1028
42 李云胜. 金属生物材料的抗腐蚀性能和生物相容性研究 [J]. 药物分析杂志, 2006, 26(7): 1028
43 Zou T C, Ou Y, Zhu H. Effect of heat treatment on microhardness of AlSi7Mg alloy fabricated by selective laser melting [J]. Hot Working Technol., 2019, 48(24): 123
43 邹田春, 欧 尧, 祝 贺. 热处理对激光选区熔化AlSi7Mg合金显微硬度的影响 [J]. 热加工工艺, 2019, 48(24): 123
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.