Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 184-192    DOI: 10.11901/1005.3093.2021.651
  研究论文 本期目录 | 过刊浏览 |
热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响
赵云梅1,2, 赵洪泽1, 吴杰1, 田晓生1,2, 徐磊1()
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy
ZHAO Yunmei1,2, ZHAO Hongze1, WU Jie1, TIAN Xiaosheng1,2, XU Lei1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110116, China
引用本文:

赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
Yunmei ZHAO, Hongze ZHAO, Jie WU, Xiaosheng TIAN, Lei XU. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 184-192.

全文: PDF(18378 KB)   HTML
摘要: 

用真空感应熔炼惰性气体雾化法(Vacuum induction melting inert gas atomization, VIGA)制备预合金粉末,然后用热等静压(Hot isostatic pressing, HIP)工艺制备粉末冶金Inconel 718板材。用钨极惰性气体保护焊(Tungstun inert gas arc welding, TIG)将板材连接并进行焊后固溶时效、均匀化和热等静压处理。用SEM和EBSD表征焊接接头的组织并测试接头区域的显微硬度,研究了焊后热处理对接头显微组织和力学性能的影响。结果表明,母材为细小的等轴晶,晶粒尺寸约为28 μm,拉伸强度接近对同牌号变形高温合金的要求。在粉末冶金Inconel 718合金的接头处未观察到宏观气孔和夹杂等焊接缺陷,热处理后接头的强度与母材的性能相当。均匀化处理后Laves相基本上溶解了,组织均匀、塑性明显提高;热等静压处理可消除焊接后板材的显微孔洞,使力学性能的稳定性提高。在拉伸过程中合金的焊接接头优先在Laves相与基体的界面产生微气孔,其聚集产生微裂纹并最终发生断裂。

关键词 金属材料Inconel 718合金粉末冶金焊接热处理显微组织力学性能    
Abstract

Powder metallurgy Inconel 718 alloy plates were prepared through hot isostatic pressing route using pre-alloyed Inconel 718 powder (produced by vacuum induction melting inert gas atomization, VIGA) in this paper, and then tungstun inert gas arc welding (TIG) is completed. Characterization of welded joints were performed using SEM, EBSD methods. Influence of post-welding heat treatment on joint microstructure and mechanical properties are analyzed. The results show that the base metal is fine equiaxed crystal, the grain size is about 28 μm, and the tensile strength is close to the requirement of wrought alloys. Powder metallurgy Inconel 718 alloy shows good weldability, no macroscopic porosities and inclusion defects are observed at the joints, and the joint strength is equivalent to the property of the base metal after heat treatment. After homogenization, the Laves phase is basically dissolved, the structure is uniform, ductility is obviously improved. Micropores and Laves can be eliminated by hot isostatic pressing treatment after welding that make mechanical properties more stable. Micro-porosities are easily formed at the interface between the Laves phase and the matrix, micro-porosities accumulate to form micro-cracks and eventually break.

Key wordsmetallic materials    Inconel 718 alloy    powder metallurgy    welding    heat treatment    microstructure    mechanical properties
收稿日期: 2021-11-22     
ZTFLH:  TG441.8  
基金资助:中国科学院稳定支持基础研究领域青年团队计划(YSBR-025)
通讯作者: 徐磊,研究员,lxu@imr.ac.cn,研究方向为粉末冶金近净成形
Corresponding author: XU Lei, Tel: (024)83978843, E-mail: lxu@imr.ac.cn
作者简介: 赵云梅,女,1996年生,硕士
图1  焊接板尺寸和拉伸试样示意图
ElementBCAlSiTiCrFeNiNbMoHON
Content0.0010.0410.530.120.9918.76Bal53.44.853.04<0.00100.0150.017
表1  Inconel 718预合金粉末的化学成分(质量分数,%)
图2  Inconel 718预合金粉末的独立粒度分布和粉末颗粒的表面形貌
图3  粉末合金内显微孔洞的大小和分布
图4  不同状态粉末冶金Inconel 718合金的组织
StateT / ℃Rp0.2 / MPaRm / MPaA / %
As-HIPedRT912124428
SART1065129721
SA2RT1083137922
Wrought[24]RT1100134515
As-HIPed650787103620
SA650864104320
SA2650893111512
Wrought[24]650930108012
表2  不同状态Inconel 718合金的拉伸性能
图5  Inconel 718粉末合金焊缝的X射线探伤结果和焊缝组织
图6  不同热处理状态焊接接头横截面的显微组织
图7  TIG焊接接头横截面不同热处理态的EBSD取向图、极图和反极图
图8  Inconel 718合金焊接接头不同热处理态的硬度分布
图9  Inconel 718合金TIG焊后的拉伸性能
图10  TIG焊接接头不同热处理态的室温拉伸断口
图11  TIG焊接接头不同热处理态在650℃的拉伸断口
1 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46(11): 1281
doi: 10.3724/SP.J.1037.2010.01281
1 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46(11): 1281
doi: 10.3724/SP.J.1037.2010.00309
2 Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52(10): 1259
2 刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52(10): 1259
doi: 10.11900/0412.1961.2016.00290
3 Du J H, Lu X D, Deng Q, et al. Progress in the research and manufacture of GH4169 alloy [J]. J. Iron. Steel. Res. Int., 2015, 22(8): 657
doi: 10.1016/S1006-706X(15)30054-6
4 Zhao X B, Gu Y F, Lu J T, et al. New research development of superalloy GH4169 [J]. Rare Met. Mater. Eng., 2015, 44(03): 768
4 赵新宝, 谷月峰, 鲁金涛 等. GH4169合金的研究新进展 [J]. 稀有金属材料与工程, 2015, 44(03): 768
5 Sonar T, Balasubramanian V, Malarvizhi S, et al. An overview on welding of Inconel 718 alloy - Effect of welding processes on microstructural evolution and mechanical properties of joints [J]. Mater. Charact., 2021, 174
6 Damodaram R, Raman S, Rao K P. Microstructure and mechanical properties of friction welded alloy 718 [J]. Mat. Sci. Eng., A., 2013, 560: 781
doi: 10.1016/j.msea.2012.10.035
7 Geng P H, Qin G L, Li T Y, et al. Microstructural characterization and mechanical property of GH4169 superalloy joints obtained by linear friction welding [J]. J. Manuf. Process., 2019, 45: 100
doi: 10.1016/j.jmapro.2019.06.032
8 Nan X J, Xiong J T, Jin F, et al. Modeling of rotary friction welding process based on maximum entropy production principle [J]. J. Manuf. Process., 2019, 37: 21
doi: 10.1016/j.jmapro.2018.11.016
9 Zhang B G, Wu L, Feng J C. Research status of electron beam welding technology at home and abroad [J]. Welding & Joining, 2004, (02): 5
9 张秉刚, 吴 林, 冯吉才. 国内外电子束焊接技术研究现状 [J]. 焊接, 2004, (02): 5
10 Liu H Q, Song J, Wang H M, et al. Heterogeneous microstructure and associated mechanical properties of thick electron beam welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy joint [J]. Mat. Sci. Eng., A, 2021, 825
11 Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mat. Sci. Eng., A, 2017, 689: 220
12 Sui S, Chen J, Ming X L, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process [J]. Int. J. Adv. Manuf. Tech., 2017, 91(5-8): 2733
doi: 10.1007/s00170-016-9901-9
13 Ye X, Hua X M, Wang M, et al. Microstructure evolution of partially melted zone of TIG welding joint of Ni-based Inconel-718 superalloy [J]. Acta Metall. Sin., 2014, 50(08): 1003
13 叶 欣, 华学明, 王 敏 等. 镍基Inconel-718合金TIG焊部分熔化区组织变化 [J]. 金属学报, 2014, 50(08): 1003
14 Venukumar S, Sarkar P, Sashank J S, et al. Microstructural and mechanical properties of Inconel 718 TIG weldments [J]. Mater. Today: Proceedings, 2018, 5(2): 8480
15 Ram G D J, Reddy A V, Rao K P, et al. Microstructure and mechanical properties of Inconel 718 electron beam welds [J]. Mater Sci. Tech-Lond., 2013, 21(10): 1132
doi: 10.1179/174328405X62260
16 Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, et al. Control of Laves phase in Inconel 718 GTA welds with current pulsing [J]. Sci. Technol. Weld. Joi., 2013, 9(5): 390
doi: 10.1179/136217104225021788
17 Chlebus E, Gruber K, Kuznicka B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mat. Sci. Eng., A, 2015, 639: 647
18 Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel718 [J]. Metall. Mater. Trans. A., 2009, 40(10): 2410
19 Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy [J]. Mat. Sci. Eng., A, 2021, 801
20 Cao X, Rivaux B, Jahazi M, et al. Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser [J]. J. Mater. Sci., 2009, 44(17): 4557
doi: 10.1007/s10853-009-3691-5
21 Reddy G M, Murthy C, Rao K S, et al. Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and postweld heat treatment [J]. Int. J. Adv. Manuf. Tech., 2009, 43(7-8): 671
doi: 10.1007/s00170-008-1751-7
22 Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact [J]. Mat. Sci. Eng., A, 2014, 599: 186
23 Wu J, Xu L, Lu Z G, et al. Preparation of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys and electron beam welding [J]. Acta Metall. Sin, 2016, 52(9): 9
23 吴 杰, 徐 磊, 卢正冠 等. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接 [J]. 金属学报, 2016, 52(9): 9
24 Zhuang J Y, Du J H, Deng Q. Deformed Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006
24 庄景云, 杜金辉, 邓 群. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006
25 Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured inconel 718 [J]. Metall. Mater. Trans. A., 2009, 40(10): 2410
26 Xu D F, Tian C S. Research on laves phase re-dissolution behaviors of Gh4169 alloy steel during heat treatment process based on mathematical model [J]. Foundry Technology, 2014, 35(11): 2570
26 徐东方, 田长申. 基于数学模型的GH4169合金钢在热处理过程中Laves相回溶行为的研究 [J]. 铸造技术, 2014, 35(11): 2570
27 Ye C W, Zhang X H, Wang L, et al. Effect of re-HIPing on microstructure of HIPed TC4 alloy [J]. T. Mater. Heat. Treat., 2013, 34(6): 4
27 叶呈武, 张绪虎, 王 亮 等. 二次热等静压对TC4合金组织的影响 [J]. 材料热处理学报, 2013, 34(6): 4
28 Shao C, Liu H Y, Li J T, et al. Applications of hot isostatic pressing on cast superalloy [J]. Mater. Rev., 2012, 26(19): 5
28 邵 冲, 刘慧渊, 李俊涛 等. 热等静压在铸造高温合金领域的应用 [J]. 材料导报, 2012, 26(19): 5
29 Sindo K, translated by Yan J C, Yang J G, Zhang J G, et al. Welding Metallurgy (2nd Edition) [M]. Beijing: Higher Education Press, 2011: 164
29 Sindo K著, 闫久春, 杨建国, 张广军译. 焊接冶金学 (第二版) [M]. 北京: 高等教育出版社, 2011: 164
30 Zheng X, Shi Y Y, Chen Y B, et al. The effects of heat treatments on the microstructure and properties of Inconel 718 electron beam welding joints [J]. Welding Digest of Machinery Manufacturing, 2017, 1: 26
30 郑 欣, 师玉英, 陈玉宝 等. 热处理对Inconel 718合金电子束焊接头微观组织和性能的影响 [J]. 机械制造文摘(焊接分册), 2017, 1: 26
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.