Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 175-183    DOI: 10.11901/1005.3093.2021.675
  研究论文 本期目录 | 过刊浏览 |
304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理
苗琪1, 左孝青1(), 周芸1, 王应武1,2, 郭路1, 王坦1, 黄蓓1
1.昆明理工大学材料科学与工程学院 昆明 650093
2.云南省科学技术院 高新技术中心 昆明 650051
Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy
MIAO Qi1, ZUO Xiaoqing1(), ZHOU Yun1, WANG Yingwu1,2, GUO Lu1, WANG Tan1, HUANG Bei1
1.School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2.Centre of Advanced Technology, Yunnan Provincial Academy of Science and Technology, Kunming 650051, China
引用本文:

苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
Qi MIAO, Xiaoqing ZUO, Yun ZHOU, Yingwu WANG, Lu GUO, Tan WANG, Bei HUANG. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 175-183.

全文: PDF(11520 KB)   HTML
摘要: 

用渗流铸造法制备ZL104合金泡沫和304不锈钢纤维/ZL104合金复合泡沫,对比研究了两种泡沫的孔结构、力学和吸声性能及其机理。结果表明,调控盐(次盐)的作用使合金泡沫和复合泡沫的孔壁上出现次孔结构而生成多孔孔壁结构;纤维复合后的泡沫以孔壁纤维、穿孔纤维和孔间纤维三种状态存在,与相同孔隙率的合金泡沫相比,复合泡沫的孔隙率为77%~86%、主孔径为0.35 mm、纤维直径为0.1 mm,具有更高的压缩性能和吸声性能。复合泡沫的压缩性能和吸声性能,都随着孔隙率和纤维含量的提高先提高后降低。孔隙率为82%的复合泡沫,纤维含量(体积分数)为5%时力学性能达到2.6 MPa,纤维含量为8%时其平均吸声系数(吸声性能)为0.893。有限元分析结果表明,复合泡沫受力时,孔壁纤维和穿孔纤维能传递和分散应力,并通过位移和偏转等方式消耗能量,使其强度提高;J-A模型分析结果表明,突出到孔隙中的纤维使复合泡沫的表面粗糙度和比表面积和声波在泡沫内的损耗增大,是其吸声性能较高的原因。

关键词 复合材料304不锈钢纤维/ZL104复合泡沫渗流铸造吸声性能力学性能孔隙率    
Abstract

Foam materials of ZL104 alloy and 304 stainless steel fiber/ZL104 alloy composite were prepared by the infiltration casting method, and their pore structure, mechanical performance, sound absorption properties and the relevant mechanisms were investigated. The results show that within the prepared foam materials, there exist interconnected larger pores, and on the wall of which, there are many smaller sub-pores. The formation of such sub-porous structure may be ascribed to the effect of the second moderating salt adopted for the infiltration casting. Moreover, the fibers present in three states in the composite foam: pore wall fiber, perforated fiber, and inter-porous fiber. The typical composite foam with fiber diameter of 0.1 mm and porosity of 77-86%, while the mean diameter of 0.35mm for the main pores. The composite foam has better compression yield strength and sound absorption performance rather that those of the alloy foam with the same porosity. The compression and sound absorption properties of composite foams increased first and then decreased with the increasing porosity and fiber content. It is wealthy noted that among others the compression yield strength reaching the peak value of 2.6 MPa for the foam with porosity of 82% and fiber content of 5%, accordingly, the average sound absorption coefficient reaching the peak value 0.893 for the composite foam with porosity of 82% and fiber content of 8%, respectively. Finite element analysis shows that when being pressed, the pore wall fibers and perforated fibers can transfer and disperse stress, and the energy can be consumed by displacement and deflection of the fibers, thus enhancing the strength of the composite foam. J-A model analysis shows that the fibers protruded into the pores increase the surface roughness and specific surface area of the foam, resulting in an increasing acoustic wave loss of the composite foam, which is the reason for the higher sound absorption property of the composite foam.

Key wordscomposites    304 stainless steel fiber/ZL104 composite foam    infiltration casting    sound absorption performance    mechanical performance    porosity
收稿日期: 2021-12-07     
ZTFLH:  TB331  
基金资助:国家自然科学基金(52261009);国家自然科学基金(51861020);国家自然科学基金(51741103);云南省重大科技专项(2019ZE008)
通讯作者: 左孝青,教授,zxqdzhhm@kmust.edu.cn,研究方向为多孔金属材料、金属基复合材料及有色金属材料
Corresponding author: ZUO Xiaoqing, Tel: 13108899276, E-mail: zxqdzhhm@kmust.edu.cn
作者简介: 苗琪,男,1996年生,硕士
SamplePore size/mmPorosity/%Fiber content/volume fraction, %Fiber size/mm2
1#0.35+0.12770
2#0.35+0.12800
3#0.35+0.12820
4#0.35+0.12840
5#0.35+0.12860
6#0.35+0.12778ϕ0.1×5
7#0.35+0.12808ϕ0.1×5
8#0.35+0.12828ϕ0.1×5
9#0.35+0.12848ϕ0.1×5
10#0.35+0.12868ϕ0.1×5
11#0.35+0.12822ϕ0.1×5
12#0.35+0.12825ϕ0.1×5
13#0.35+0.128211ϕ0.1×5
表1  合金泡沫和复合泡沫试样的参数
图1  ZL104合金泡沫和304不锈钢纤维/ZL104合金复合泡沫的孔结构以及复合泡沫中纤维的状态
图2  孔隙率不同的合金泡沫和复合泡沫试样的压缩应力-应变曲线
图3  纤维含量不同的复合泡沫的应力-应变曲线
图4  合金泡沫和复合泡沫试样的吸声系数与频率的关系
图5  纤维含量不同的复合泡沫的吸声系数与频率的关系
图6  合金泡沫和复合泡沫的压缩应变
Porosity/%7780828486
Alloy foam/MPa(1#~5#)1.901.300.800.700.50
Composite foam/MPa(6#~10#)2.151.501.631.100.70
表2  孔隙率不同的泡沫试样的屈服强度
Sample11#12#8#13#
Fiber content/%25811
Yield strength/MPa0.602.601.630.90
表3  纤维含量不同的复合泡沫的屈服强度
Porosity/%7780828486
Alloy foam(1#~5#)--0.810--
Composite foam(6#~10#)0.8290.8700.8930.8880.832
表4  孔隙率不同的泡沫试样的平均吸声系数
Sample3#11#12#8#13#
Fiber content/%025811
Average sound absorption coefficient0.8100.8820.8840.8930.872
表5  纤维含量不同的复合泡沫的平均吸声系数
图7  纤维含量为8%的复合泡沫不同位置的应力分布
PositionABCDEFGH
Stress /×109 Pa9.268.401.984.653.090.7460.6511.31
表6  纤维含量为8%的复合泡沫不同位置的应力
图8  孔隙率不同的ZL104合金泡沫的局部孔结构
1 Bai P, Yang X, Shen X, et al. Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal [J]. Materials & Design, 2019, 167: 107637
2 Marx J C, Robbins S J, Grady Z A, et al. Polymer infused composite metal foam as a potential aircraft leading edge material [J]. Applied Surface Science, 2020, 505: 144114
doi: 10.1016/j.apsusc.2019.144114
3 Otaru A J, Morvan H P, Kennedy A R. Modelling and optimisation of sound absorption in replicated microcellular metals [J]. Scripta Materialia, 2018, 150: 152
doi: 10.1016/j.scriptamat.2018.03.022
4 Shen X, Bai P, Chen L, et al. Development of thin sound absorber by parameter optimization of multilayer compressed porous metal with rear cavity [J]. Applied Acoustics, 2020, 159: 107071
doi: 10.1016/j.apacoust.2019.107071
5 Otaru A J, Morvan H P, Kennedy A R. Numerical modelling of the sound absorption spectra for bottleneck dominated porous metallic structures [J]. Applied Acoustics, 2019, 151: 164
doi: 10.1016/j.apacoust.2019.03.014
6 Wang Y, Zuo X, Kong D, et al. A comparative analysis of sound absorption performance of ZL104/aluminum fiber composite foam [J]. J. Mater. Res., 2019, 34(21): 3717
doi: 10.1557/jmr.2019.263
7 Kim S Y, Park S H, Um Y S, et al. Sound absorption properties of Al foam [J]. Materials Science Forum, 2005, 468: 486
8 Haward S J, Odell J A, Li Z, et al. The rheology of polymer solution elastic strands in extensional flow [J]. Rheol. Acta., 2010, 49(7): 781
doi: 10.1007/s00397-010-0453-x
9 Zhai W, Yu X, Song X, et al. Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique [J]. Materials & Design, 2018, 137: 108
10 Liu P S, Qing H B, Hou H L. Primary investigation on sound absorption performance of highly porous titanium foams [J]. Materials & Design, 2015, 85(Nov.15) : 275
11 Bai P, Shen X, Zhang X, et al. Influences of compression ratios on sound absorption performance of porous nickel-iron alloy [J]. Metals, 2018, 8(7): 539
doi: 10.3390/met8070539
12 Liu P S, Qing H B. A Spherical-pore foamed titanium alloy with high porosity [J]. Chinese Journal of Materials Research, 2015, 29(5): 346
12 刘培生, 顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29(5): 346
13 Jin W, Liu J, Wang Z, et al. Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation [J]. Materials (Basel), 2015, 8(11): 7511
doi: 10.3390/ma8115395
14 Navacerrada M A, Fernández P, Díaz C, et al. Thermal and acoustic properties of aluminium foams manufactured by the infiltration process [J]. Applied Acoustics, 2013, 74(4): 496
doi: 10.1016/j.apacoust.2012.10.006
15 Ao Q B, Wang J Z, Tang H P, et al. Sound absorption characteristics and structure optimization of porous metal fibrous materials [J]. Rare Metal Materials and Engineering, 2015, 44(11): 2646
doi: 10.1016/S1875-5372(16)60011-5
16 Perrot C, Chevillotte F, Panneton R. Bottom-up approach for microstructure optimization of sound absorbing materials [J]. J. Acoust. Soc. Am., 2008, 124(2): 940
doi: 10.1121/1.2945115 pmid: 18681586
17 Yang X H, Ren S W, Wang W B, et al. A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells [J]. Composites Science and Technology, 2015, 118:276
doi: 10.1016/j.compscitech.2015.09.009
18 Guan D, Wu J H, Jing L. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set [J]. Journal of Alloys and Compounds, 2015, 626: 29
doi: 10.1016/j.jallcom.2014.11.159
19 Soni B, Biswas S. Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method [J]. J. Mater. Res., 2018, 33(20): 3418
doi: 10.1557/jmr.2018.281
20 Yu X, Lu Z, Zhai W. Enhancing the flow resistance and sound absorption of open-cell metallic foams by creating partially-open windows [J]. Acta Materialia, 2021, 206: 116666
doi: 10.1016/j.actamat.2021.116666
21 Wu J, Cheng H F, Huang X M, et al. Effects of modification and heat treatment on energyabsorption capacities of aluminum alloy foams [J]. Special Casting & Nonferrous Alloys, 2011, 31(4): 373
21 吴 进, 程和法, 黄笑梅 等. 变质处理及热处理对泡沫铝合金压缩吸能性的影响 [J]. 特种铸造及有色合金, 2011, 31(4): 373
22 Wang H, Zhou X Y, Long B, et al. Sound absorption properties of open-cells aluminum foams prepared by infiltration casting methods [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 1034
22 王 辉, 周向阳, 龙 波 等. 渗流铸造法制备的开孔泡沫铝的声学性能 [J]. 中国有色金属学报, 2013, 23(4): 1034
23 Liu M, Cheng H F, Huang X M, et al. Preparation of low density open-cell aluminum foam by soluble plaster mould [J]. Special Casting & Nonferrous Alloys, 2010, 30(5): 462
23 刘 铭, 程和法, 黄笑梅 等. 用可溶石膏型预制块制备低密度开孔泡沫铝 [J]. 特种铸造及有色合金, 2010, 30(5): 462
24 Altınkök N. Investigation of mechanical and machinability properties of Al2O3/SiCp reinforced Al-based composite fabricated by stir cast technique [J]. J. Porous. Mater., 2015, 22(6): 1643
doi: 10.1007/s10934-015-0048-0
25 Guo C, Zou T, Shi C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers [J]. Materials Science and Engineering: A, 2015, 645: 1
doi: 10.1016/j.msea.2015.07.091
26 Wu J, Li C, Wang D, et al. Damping and sound absorption properties of particle reinforced Al matrix composite foams [J]. Composites Science and Technology, 2003, 63(3-4): 569
doi: 10.1016/S0266-3538(02)00215-4
27 Zhang J, Jie J, Lu Y, et al. Fabrication of carbon fibers reinforced Al-matrix composites in pulsed magnetic field [J]. J. Mater. Res. Technol., 2021, 11: 197
doi: 10.1016/j.jmrt.2020.12.100
28 Mu Y, Yao G, Cao Z, et al. Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam [J]. Scripta Materialia, 2011, 64(1): 61
doi: 10.1016/j.scriptamat.2010.09.005
29 Huang Y, Ouyang Q, Zhang D, et al. Carbon materials reinforced aluminum composites: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27(5): 775
doi: 10.1007/s40195-014-0160-1
30 Singh B B, Balasubramanian M. Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites [J]. Journal of Materials Processing Technology, 2009, 209(4): 2104
doi: 10.1016/j.jmatprotec.2008.05.002
31 Pan L W, Rao D W, Yang C, et al. Research progress on preparation methods and energy absorption properties of hollow particles/metal matrix syntactic foams [J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1370
31 潘利文, 饶德旺, 杨 超 等. 空心微珠/金属基复合泡沫制备方法与吸能性能的研究进展 [J]. 复合材料学报, 2020, 37(6): 1370
32 Lee S, Kim G, Kim H, et al. Impact resistance, flexural and tensile properties of amorphous metallic fiber-reinforced cementitious composites according to fiber length [J]. Constr. Build. Mater., 2021, 271: 121872
doi: 10.1016/j.conbuildmat.2020.121872
33 Allard J F, Atalla N. Propagation of Sound in Porous Media: Modelling sound absorbing materials 2nd Ed. [M]. Hoboken: A John Wiley and Sons, 2009: 45
34 Kalauni K, Pawar S J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials [J]. J. Porous Mater., 2019, 26(6): 1795
doi: 10.1007/s10934-019-00774-2
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.