Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 193-202    DOI: 10.11901/1005.3093.2021.704
  研究论文 本期目录 | 过刊浏览 |
TiZr基非晶/TC21双层复合材料的制备和力学性能
林师峰1,2, 徐东安3, 庄艳歆1, 张海峰1,2, 朱正旺2()
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.陆军装备部驻沈阳地区军事代表局驻沈阳地区第二军事代表室 沈阳 110004
Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites
LIN Shifeng1,2, XU Dongan3, ZHUANG Yanxin1, ZHANG Haifeng1,2, ZHU Zhengwang2()
1.School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Military Representative Office of the Army Equipment Department in Shenyang, Shenyang 110004, China
引用本文:

林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
Shifeng LIN, Dongan XU, Yanxin ZHUANG, Haifeng ZHANG, Zhengwang ZHU. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. Chinese Journal of Materials Research, 2023, 37(3): 193-202.

全文: PDF(5466 KB)   HTML
摘要: 

用渗流法制备TiZr基非晶/TC21钛合金双层复合材料,并对其微观组织和力学性能进行深入的研究。结果表明,TiZr基非晶(ZT3, Ti32.8Zr30.2Ni5.3Cu9Be22.7)合金熔体与TC21钛合金之间的界面结合良好且有良好的润湿性。制备温度对双层复合材料的微观结构和力学性能有极大的影响。随着制备温度的提高,界面层的厚度和TC21钛合金的溶解量增加,非晶基体中枝晶相的体积分数增大、晶粒粗化。这种双层复合材料的强度随着温度的提高而降低,在室温下具有良好的弯曲塑性,其弯曲强度达到2177 MPa、动态压缩强度达到1326 MPa。

关键词 金属材料非晶复合材料制备温度微观结构弯曲性能动态压缩性能    
Abstract

Dual-layered composites of TiZr-based bulk metallic glass /TC21 Ti-alloy were successfully prepared by infiltration method, and their microstructure and mechanical property were investigated in detail. The results show that there is a good wettability of ZT3 (Ti32.8Zr30.2Ni5.3Cu9Be22.7) melt with TC21 Ti-alloy, and the as-prepared dual-layered composites show an excellent interfacial bonding between BMGs and TC21 Ti-alloys. The temperature of preparation plays a critical role for the microstructure and mechanical property of the dual-layered composites. With the increasing temperature for preparation, the interfacial layers become thicker moreover, the TC21 Ti-alloy may dissolve increasingly into the BMGs matrix so that the dendrites precipitate significantly increase and they become coarser with the increasing temperature. The dual-layered composites exhibit a satisfied flexural mechanical property, namely a flexural strength of 2177 MPa with outstanding flexural plasticity. Additionally, the prepared dual-layered composites show the dynamic compressive strength up to 1326 MPa at ambient temperature, but decreases as the temperature increasing.

Key wordsmetallic materials    bulk metallic glass composites    preparation temperature    microstructure    flexural mechanical property    dynamic compressive mechanical property
收稿日期: 2021-12-24     
ZTFLH:  TB331  
基金资助:国家自然科学基金(52074527)
通讯作者: 朱正旺,研究员,zwzhu@imr.ac.cn,研究方向为非晶与高熵合金
Corresponding author: ZHU Zhengwang, Tel: (024)23971782, E-mail: zwzhu@imr.ac.cn
作者简介: 林师峰,男,1992生,博士生
图1  润湿角与温度和时间的关系
图2  在不同温度制备的双层复合材料的示意图和界面处的微观结构扫描图
图3  在1173 K制备的双层复合材料界面处的微观结构线性扫描图和对应的成分分布
CompositionsAlTiCrNiCuZrNbMoSn
Dendrites4.7269.611.271.993.6016.980.251.030.54
Metallic glass matrix3.6958.071.135.377.9523.560.440.420.31
表1  在1123 K制备的双层复合材料界面处的枝晶相与非晶基体的含量。
图4  ZT3非晶合金和在不同温度制备的双层复合材料的弯曲应力-挠度曲线和在1173 K制备的复合材料的弯曲应力-挠度曲线的局部放大图
图5  在不同温度制备的双层复合材料样品弯曲失效后的侧面扫描图
图6  在不同温度处理的TC21钛合金的拉伸应力-应变曲线
图7  在不同温度制备的双层复合材料的动态压缩应力-应变曲线和在动态压缩过程中试样的应变速率与时间的关系
1 Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility [J]. Acta Mater., 2021, 206: 116632
doi: 10.1016/j.actamat.2021.116632
2 Zhang C, Wang W, Xing W, et al. Understanding on toughening mechanism of bioinspired bulk metallic glassy composites by thermal spray additive manufacturing [J]. Scr. Mater., 2020, 177: 112
doi: 10.1016/j.scriptamat.2019.10.017
3 Lin S F, Liu D M, Zhu Z W, et al. New Ti-based bulk metallic glasses with exceptional glass forming ability [J]. J. Non-Cryst. Solids., 2018, 502: 71
doi: 10.1016/j.jnoncrysol.2018.06.038
4 Xing D, Chen S S, Chen P D, et al. Effect of Fe microalloying on plastic deformation behavior of Cu-Zr-Al metallic glasses [J]. Chin. J. Mater. Res., 2021, 35(11): 850
doi: 10.11901/1005.3093.2020.444
4 邢 栋, 陈双双, 宋佩頔 等. Fe微合金化对Cu-Zr-Al非晶合金塑性变形行为的影响及其机理 [J]. 材料研究学报, 2021, 35(11): 850
5 Li T T, Hu Y, Cui X M, et al. Micro-hardness and Shear Bands of Zr-Al-Cu-Ni-Ag Bulk Metallic Glass Composites [J]. Chin. J. Mater. Res., 2014, 28(10): 730
5 李亭亭, 胡 勇, 崔晓明 等. Zr-Al-Cu-Ni-Ag非晶复合材料的显微硬度和剪切带形貌 [J]. 材料研究学报, 2014, 28(10): 730
6 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2005, 5(1): 15
doi: 10.1038/nmat1536
7 Lin S F, Ge S F, Zhu Z W, et al. Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering [J]. Appl. Mater. Today., 2021, 22: 100944
8 Lin S F, Zhu Z W, Ge S F, et al. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy [J]. J. Mater. Sci. Technol., 2020, 50: 128
doi: 10.1016/j.jmst.2019.12.037
9 Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility [J]. PNAS., 2008, 105(51): 20136
doi: 10.1073/pnas.0809000106 pmid: 19074287
10 Kolodziejska J A, Kozachkov H, Kranjc K, et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites [J]. Sci. Rep., 2016, 6(1): 22563
doi: 10.1038/srep22563
11 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451(7182): 1085
doi: 10.1038/nature06598
12 Szuecs F, Kim C P, Johnson W L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite [J]. Acta Mater., 2001, 49(9): 1507
doi: 10.1016/S1359-6454(01)00068-4
13 Kozachkov H, Kolodziejska J, Johnson W L, et al. Effect of cooling rate on the volume fraction of B2 phases in a CuZrAlCo metallic glass matrix composite [J]. Intermetallic., 2013, 39: 89
doi: 10.1016/j.intermet.2013.03.017
14 Zhang H F, Li H, Wang A M, et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite [J]. Intermetallic., 2009, 17(12): 1070
doi: 10.1016/j.intermet.2009.05.011
15 Zhang B, Fu H M, Zhang H F, et al. Synthesis and property of short tungsten fibre/Zr-based metallic glass composite [J]. J. Mater. Sci. Technol., 2019, 35: 1347
doi: 10.1080/02670836.2019.1624017
16 Zhang H, Liu L Z, Zhang Z F, et al. Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading [J]. J. Mater. Res., 2006, 21(6): 1375
doi: 10.1557/jmr.2006.0169
17 Li Z K, Fu H M, Sha P F, et al. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites [J]. Sci. Rep., 2015, 5(1): 8967
doi: 10.1038/srep08967
18 Tang H, Zhang Y, Li Y. Synthesis of La-based in-situ bulk metallic glass matrix composite [J]. Intermetallic, 2002, 10(11-12): 1203
doi: 10.1016/S0966-9795(02)00148-6
19 Fu X L, Li Y, Schuh C A. Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement [J]. J. Mater. Res., 2011, 22(6): 1564
doi: 10.1557/JMR.2007.0191
20 Qiao J W. In-situ dendrite/metallic glass matrix composites: a review [J]. J. Mater. Sci. Technol., 2013, 29(8): 685
doi: j.jmst.2013.05.020
21 Qiao J W, Wang S, Zhang Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification [J]. Appl. Phys. Lett., 2009, 94(15): 151905
doi: 10.1063/1.3118587
22 Cheng J L, Chen G, Xu F, et al. Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites [J]. Intermetallic, 2010, 18(12): 2425
doi: 10.1016/j.intermet.2010.08.040
23 Zhang X L, Chen G, Du Y L. Synthesis of plastic Mg-based bulk-metallic-glass matrix composites by bridgman solidification [J]. Metall. Mater. Trans. A, 2012, 43(8): 2604
doi: 10.1007/s11661-012-1107-7
24 Qiao J W, Jia H L, Liaw P K, Metallic glass matrix composites [J]. Mater. Sci. Eng. R., 2016, 100: 1
doi: 10.1016/j.mser.2015.12.001
25 Chen S, Li W Q, Zhang L, et al. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites [J]. Composites B, 2020, 199: 108219
doi: 10.1016/j.compositesb.2020.108219
26 Tang M Q, Zhang H F, Zhu Z W, et al. TiZr-base bulk metallic glass with over 50 mm in diameter [J]. J. Mater. Sci. Technol., 2010, 26(6): 481
doi: 10.1016/S1005-0302(10)60077-1
27 Wen X, Wan M P, Huang C W, et al. Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy [J]. Mater. Des., 2019, 180: 107898
doi: 10.1016/j.matdes.2019.107898
28 Long W, Zhang S, Liang Y L, et al. Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy [J]. Int. J. Miner. Metall. Mater., 2020, 28(2): 296
doi: 10.1007/s12613-020-1996-1
29 Ding S, Kong J, Schroers J. Wetting of bulk metallic glass forming liquids on metals and ceramics [J]. J. Appl. Phys., 2011, 110(4): 043508
30 Ma G, Lv S, Lu Z, et al. Wetting behavior and interfacial characteristic of Ti32.8Zr30.2Cu9Ni5.3Be22.7/Ti55 alloy system [J]. Mater. Chem. Phys., 2021, 270: 124759
doi: 10.1016/j.matchemphys.2021.124759
31 Ma G F, Li Z K, He C L, et al. Wetting behaviors and interfacial characteristics of TiZr-based bulk metallic glass/W substrate [J]. J. Alloys Compd., 2013, 549: 254
doi: 10.1016/j.jallcom.2012.09.066
32 Ghoneim A, Ojo O A. Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids [J]. Comput. Mater. Sci., 2011, 50(3): 1102
doi: 10.1016/j.commatsci.2010.11.008
33 Conner R D, Li Y, Nix W D, et al. Shear band spacing under bending of Zr-based metallic glass plates [J]. Acta Mater., 2004, 52(8): 2429
doi: 10.1016/j.actamat.2004.01.034
34 Zhang L, Jiang F, Zhao Y, et al. Shear band multiplication aided by free volume under three-point bending [J]. J. Mater. Res., 2011, 25(2): 283
doi: 10.1557/JMR.2010.0028
35 Guo W, Kato H, Yamada R, et al. Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method [J]. J. Alloys Compd., 2017, 707: 332
doi: 10.1016/j.jallcom.2016.10.167
36 Wu F F, Chan K C, Li S T, et al. Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading [J]. J. Mater. Sci., 2013, 49(5): 2164
doi: 10.1007/s10853-013-7909-1
37 Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites B, 2017, 108: 377
doi: 10.1016/j.compositesb.2016.10.001
38 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
39 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10(11): 817
doi: 10.1038/nmat3115 pmid: 22020005
40 Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Mater., 2003, 51(12): 3429
doi: 10.1016/S1359-6454(03)00164-2
41 Li M C, Jiang M Q, Yang S, et al. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng. A, 2017, 680: 21
doi: 10.1016/j.msea.2016.10.081
42 Li W Q, Zhu Z W, Li G J, et al. Correlation between dynamic compressive strength and fracture behaviors of bulk metallic glasses [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(10): 1407
doi: 10.1007/s40195-020-01065-5
43 Zhang J X, Yi X B, Shen J C, et al. Influence of solution and ambient temperature on dynamic compression mechanical properties and adiabatic shear sensitivity of TC21 titanium alloy [J]. Materials Reports, 2020, 34(12): 24092
43 张俊喜, 易湘斌, 沈建成 等. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响 [J]. 材料导报, 2020, 34(12): 24092
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.