|
|
316L不锈钢非比例路径疲劳失效的微观机理 |
金丹( ), 韩高枫, 龙浩跃, 金铠 |
沈阳化工大学机械与动力工程学院 沈阳 110142 |
|
Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel |
JIN Dan( ), HAN Gaofeng, LONG Haoyue, JIN Kai |
School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China |
引用本文:
金丹, 韩高枫, 龙浩跃, 金铠. 316L不锈钢非比例路径疲劳失效的微观机理[J]. 材料研究学报, 2022, 36(11): 845-849.
Dan JIN,
Gaofeng HAN,
Haoyue LONG,
Kai JIN.
Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel[J]. Chinese Journal of Materials Research, 2022, 36(11): 845-849.
1 |
Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing [J]. Mater. Sci. Eng A. Struct. Mater, 2020, 796(7): 140006
doi: 10.1016/j.msea.2020.140006
|
2 |
Farrahi G H, Minai K, Bahai H. Fretting fatigue behavior of 316L stainless steel under combined loading conditions [J]. Int J Fatigue, 2019, 128: 105206
doi: 10.1016/j.ijfatigue.2019.105206
|
3 |
Zhang M, Sun C N, Zhang X, et al. High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling [J]. Int J Fatigue, 2018, 121: 252
doi: 10.1016/j.ijfatigue.2018.12.016
|
4 |
Kumar P, Jayaraj R, Suryawanshi J, et al. McKinnell, U. Ramamurty. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta. Mater, 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
|
5 |
Carneiro L, Wang X G, Jiang Y A. Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment [J]. Int J Fatigue, 2020, 134: 105469
|
6 |
Yang X J, Gao Q, He G Q, et al. On nonproportional cyclic properties of type 316 stainless steels [J]. Acta. Metall. Sin, 1996(01): 15
|
6 |
杨显杰, 高 庆, 何国求 等. 316不锈钢的非比例循环特性 [J]. 金属学报, 1996(01): 15
|
7 |
Kim D W, Chang J H, Ryu W S. Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel [J]. Intl. J. Press. Vsl. Piping, 2007, 85(6): 378
|
8 |
Gan L, Wu H, Zhong Z. Low-cycle fatigue life prediction for 316L stainless steel using strain-based model [J]. J. Mech. Str, 2020, 42(02): 313
|
8 |
甘 磊, 吴 昊, 仲 政. 基于应变的316L不锈钢低周疲劳寿命预测方法 [J]. 机械强度, 2020, 42(02): 313
|
9 |
He G Q, Chen C S, Gao Q, et al. Definition of non-proportionality of strain path based on microstructures analysis [J]. Acta. Metall. Sin, 2003(07): 715
|
9 |
何国求, 陈成澍, 高 庆 等. 基于微结构分析定义应变路径非比例度 [J]. 金属学报, 2003(07): 715
|
10 |
Tan J B, Wu X Q, Han E H. Review on relationship between dynamic strain aging and environmentally assisted cracking of structural materials used in nuclear power plants [J]. J. Chin. Soc. Corrosion. Prot, 2012, 32(06): 437
|
10 |
谭季波, 吴欣强, 韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展 [J]. 中国腐蚀与防护学报, 2012, 32(06): 437
|
11 |
Li B B, Zheng Y, Zhao J W, et al. Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550℃ [J]. Mater. Sci. Eng A. Struct. Mater, 2021, 818(141411)
|
12 |
Nagesha A, Kannan R, Parameswaran P, et al. A comparative study of isothermal and thermomechanical fatigue on type 316L(N) austenitic stainless steel [J]. Mater. Sci. Eng A. Struct. Mater, 2010, 527(21): 5969
doi: 10.1016/j.msea.2010.05.082
|
13 |
Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J]. J Nuc Mater, 2004, 328(2): 232
|
14 |
Hong S G, Lee K O, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. International Journal of Fatigue, 2005, 27(10-12): 1420
|
15 |
Chen L, Jiang J L. Investigation about low cycle fatigue behavior of 316l steel at room and elevated temperature [J]. J. Mech. Str, 2005, 27(1): 121
|
15 |
陈 凌, 蒋家羚. 316L钢室温和中温环境下应力控制的低周疲劳行为研究 [J]. 机械强度, 2005, 27(1): 121
|
16 |
Jiang H F, Chen X D, Fan Z C. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steelunder different loading conditions [J]. J. Mechanical. Strength, 2009, 392(3): 494
|
17 |
Jin D, Zhang J Y, LI J H. Dynamic strain aging of 316l stainless steel under circular loading [J]. Acta. Arm, 2018, 39(03): 584
|
17 |
金 丹, 张江玉, 李江华. 316L不锈钢圆路径下的动态应变时效分析 [J]. 兵工学报, 2018, 39(03): 584
|
18 |
Jin D, Li J H, Tian D J. Dynamic strain aging of 316l stainless steel during uniaxial fatigue process at 600℃ [J]. Chin. J. Mater. Res, 2016, 30(07): 496
|
18 |
金 丹, 李江华, 田大将. 316L不锈钢单轴疲劳动态应变的时效分析 [J]. 材料研究学报, 2016, 30(07): 496
|
19 |
Ackermamm F, Kubin L P, Lepinoux J, et al. The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals [J]. Acta. Metall, 1984, 32: 715
doi: 10.1016/0001-6160(84)90145-7
|
20 |
Li C Q, Xu D K, Han E H. Research Progress on the plastic Instability Phenomenon of Magnesium Alloys [J]. Mater. Chin, 2016, 35(11): 809
|
20 |
李传强, 许道奎, 韩恩厚. 镁合金塑性变形过程中锯齿屈服现象的研究进展 [J]. 中国材料进展, 2016, 35(11): 809
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|