Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 845-849    DOI: 10.11901/1005.3093.2021.447
  研究论文 本期目录 | 过刊浏览 |
316L不锈钢非比例路径疲劳失效的微观机理
金丹(), 韩高枫, 龙浩跃, 金铠
沈阳化工大学机械与动力工程学院 沈阳 110142
Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel
JIN Dan(), HAN Gaofeng, LONG Haoyue, JIN Kai
School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

金丹, 韩高枫, 龙浩跃, 金铠. 316L不锈钢非比例路径疲劳失效的微观机理[J]. 材料研究学报, 2022, 36(11): 845-849.
Dan JIN, Gaofeng HAN, Haoyue LONG, Kai JIN. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel[J]. Chinese Journal of Materials Research, 2022, 36(11): 845-849.

全文: PDF(1351 KB)   HTML
摘要: 

进行316L不锈钢在600℃圆路径下不同应变范围的低周疲劳实验,用透射电子显微镜(TEM)观察疲劳失效断口附近的显微组织,研究了位错结构的路径相关性、幅值相关性以及动态应变时效(Dynamic strain aging,DSA)的路径相关性。结果表明:在室温和600℃的单轴加载变形以平面滑移方式为主,生成了脉络状位错结构;而在圆路径下则生成等轴胞状位错结构,显著降低了材料抵抗变形的能力,在600℃等效应变范围为1.0%条件下的疲劳寿命比单轴路径降低了81%。同时,在圆路径下材料形成胞状位错结构所需最小等效应变范围比单轴的低。600℃圆路径下的DSA效应更为完全,在等效应变范围为1.0%的条件下最大应力跌幅比单轴路径增大了680%;同时,压缩阶段的DSA现象更为显著,锯齿类型由A型经过B型过渡到C型。

关键词 金属材料316L不锈钢动态应变时效圆路径位错锯齿类型    
Abstract

Low cycle fatigue experiments for 316L stainless steel were carried out under circular loading and different strain ranges at 600℃. The microstructures near the fatigue fracture were observed by transmission electron microscope (TEM). The path correlation and amplitude correlation of dislocation structure and the path correlation of dynamic strain aging (DSA) were investigated based on the experimental results. The results show that at room temperature and 600℃, the planar slip is significant under uniaxial loading and the choroid dislocation structure formed. However, the equiaxed cellular dislocation structures are exhibited under circular loading, which reduces the deformation resistance of the material significantly. For equivalent strain range 1.0%, the fatigue life under circular loading is 81% lower than that of the uniaxial loading at 600℃. At the same time, the minimum equivalent strain range required to form a cellular dislocation structure under the circular loading is lower than that of the uniaxial loading. At 600℃, the DSA effect is more complete under circular loading, and the maximum stress drop for equivalent strain range 1.0% increases by 680% compared with that under uniaxial loading. The DSA phenomenon is more evident in the compression stage, and the sawtooth type gradually transitions from type A, type B to type C.

Key wordsmetallic materials    316L stainless steel    dynamic strain aging    circular loading    dislocation    sawtooth type
收稿日期: 2021-08-13     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金(11102119);辽宁省教育厅项目(LJKZ0437)
作者简介: 金丹,女,1976年生,博士
图1  试件的形状和几何尺寸
图2  ?εeq=0.7%、?εeq=1.0%的圆路径半寿命滞回线
图3  等效应变1.0%下疲劳断口附近位错结构
图4  不同应变范围下疲劳断口附近的位错结构
1 Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing [J]. Mater. Sci. Eng A. Struct. Mater, 2020, 796(7): 140006
doi: 10.1016/j.msea.2020.140006
2 Farrahi G H, Minai K, Bahai H. Fretting fatigue behavior of 316L stainless steel under combined loading conditions [J]. Int J Fatigue, 2019, 128: 105206
doi: 10.1016/j.ijfatigue.2019.105206
3 Zhang M, Sun C N, Zhang X, et al. High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling [J]. Int J Fatigue, 2018, 121: 252
doi: 10.1016/j.ijfatigue.2018.12.016
4 Kumar P, Jayaraj R, Suryawanshi J, et al. McKinnell, U. Ramamurty. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta. Mater, 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
5 Carneiro L, Wang X G, Jiang Y A. Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment [J]. Int J Fatigue, 2020, 134: 105469
6 Yang X J, Gao Q, He G Q, et al. On nonproportional cyclic properties of type 316 stainless steels [J]. Acta. Metall. Sin, 1996(01): 15
6 杨显杰, 高 庆, 何国求 等. 316不锈钢的非比例循环特性 [J]. 金属学报, 1996(01): 15
7 Kim D W, Chang J H, Ryu W S. Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel [J]. Intl. J. Press. Vsl. Piping, 2007, 85(6): 378
8 Gan L, Wu H, Zhong Z. Low-cycle fatigue life prediction for 316L stainless steel using strain-based model [J]. J. Mech. Str, 2020, 42(02): 313
8 甘 磊, 吴 昊, 仲 政. 基于应变的316L不锈钢低周疲劳寿命预测方法 [J]. 机械强度, 2020, 42(02): 313
9 He G Q, Chen C S, Gao Q, et al. Definition of non-proportionality of strain path based on microstructures analysis [J]. Acta. Metall. Sin, 2003(07): 715
9 何国求, 陈成澍, 高 庆 等. 基于微结构分析定义应变路径非比例度 [J]. 金属学报, 2003(07): 715
10 Tan J B, Wu X Q, Han E H. Review on relationship between dynamic strain aging and environmentally assisted cracking of structural materials used in nuclear power plants [J]. J. Chin. Soc. Corrosion. Prot, 2012, 32(06): 437
10 谭季波, 吴欣强, 韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展 [J]. 中国腐蚀与防护学报, 2012, 32(06): 437
11 Li B B, Zheng Y, Zhao J W, et al. Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550℃ [J]. Mater. Sci. Eng A. Struct. Mater, 2021, 818(141411)
12 Nagesha A, Kannan R, Parameswaran P, et al. A comparative study of isothermal and thermomechanical fatigue on type 316L(N) austenitic stainless steel [J]. Mater. Sci. Eng A. Struct. Mater, 2010, 527(21): 5969
doi: 10.1016/j.msea.2010.05.082
13 Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J]. J Nuc Mater, 2004, 328(2): 232
14 Hong S G, Lee K O, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. International Journal of Fatigue, 2005, 27(10-12): 1420
15 Chen L, Jiang J L. Investigation about low cycle fatigue behavior of 316l steel at room and elevated temperature [J]. J. Mech. Str, 2005, 27(1): 121
15 陈 凌, 蒋家羚. 316L钢室温和中温环境下应力控制的低周疲劳行为研究 [J]. 机械强度, 2005, 27(1): 121
16 Jiang H F, Chen X D, Fan Z C. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steelunder different loading conditions [J]. J. Mechanical. Strength, 2009, 392(3): 494
17 Jin D, Zhang J Y, LI J H. Dynamic strain aging of 316l stainless steel under circular loading [J]. Acta. Arm, 2018, 39(03): 584
17 金 丹, 张江玉, 李江华. 316L不锈钢圆路径下的动态应变时效分析 [J]. 兵工学报, 2018, 39(03): 584
18 Jin D, Li J H, Tian D J. Dynamic strain aging of 316l stainless steel during uniaxial fatigue process at 600℃ [J]. Chin. J. Mater. Res, 2016, 30(07): 496
18 金 丹, 李江华, 田大将. 316L不锈钢单轴疲劳动态应变的时效分析 [J]. 材料研究学报, 2016, 30(07): 496
19 Ackermamm F, Kubin L P, Lepinoux J, et al. The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals [J]. Acta. Metall, 1984, 32: 715
doi: 10.1016/0001-6160(84)90145-7
20 Li C Q, Xu D K, Han E H. Research Progress on the plastic Instability Phenomenon of Magnesium Alloys [J]. Mater. Chin, 2016, 35(11): 809
20 李传强, 许道奎, 韩恩厚. 镁合金塑性变形过程中锯齿屈服现象的研究进展 [J]. 中国材料进展, 2016, 35(11): 809
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.