Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 829-836    DOI: 10.11901/1005.3093.2021.477
  研究论文 本期目录 | 过刊浏览 |
碳包覆纳米铜的原位热解法制备及其稳定性
宗平1,2,3, 李世伟2,3, 陈红2,3, 苗赛男2,3, 张慧4, 李超2,3()
1.西安交通大学航天航空学院 西安 710049
2.西安交通大学苏州研究院 苏州 215123
3.西安交通大学纳米科学与工程技术学院(苏州) 苏州 215123
4.宁夏大学化学化工学院省部共建煤炭高效利用与绿色化工国家重点实验室 银川 750021
In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability
ZONG Ping1,2,3, LI Shiwei2,3, CHEN Hong2,3, MIAO Sainan2,3, ZHANG Hui4, LI Chao2,3()
1.School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, China
3.School of Nano-Science and Nano-Engineering (Suzhou), Xi'an Jiaotong University, Suzhou 215123, China
4.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
引用本文:

宗平, 李世伟, 陈红, 苗赛男, 张慧, 李超. 碳包覆纳米铜的原位热解法制备及其稳定性[J]. 材料研究学报, 2022, 36(11): 829-836.
Ping ZONG, Shiwei LI, Hong CHEN, Sainan MIAO, Hui ZHANG, Chao LI. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. Chinese Journal of Materials Research, 2022, 36(11): 829-836.

全文: PDF(16614 KB)   HTML
摘要: 

以天然棉纤维为模板用一步热解法在氮气气氛中原位制备纳米铜碳复合材料(NCCC),再以浸泡了硫酸铜的棉纤维为热解碳源、以商业纳米铜和微米铜为铜源原位制备了碳包覆纳米/微米铜。使用TEM、XRD和Raman等手段对其表征,研究了这种材料的稳定性。结果表明,NCCC是一种典型的具有碳包覆纳米铜核壳结构的材料;用原位热解法制备碳包覆金属纳米/微米材料,进一步证实棉纤维热解气氛为碳源及原位还原剂。验证了碳包覆材料的抗氧化性:碳壳的形成使NCCC暴露在空气中180 d或水中35 d后仍保持铜和氧化亚铜的物相组成;受碳壳保护的商业纳米铜,暴露空气中120 d仍未氧化。

关键词 复合材料核壳结构原位热解纳米铜稳定性    
Abstract

Nano-copper-carbon composites (NCCC) was prepared by one-step pyrolysis in nitrogen atmosphere using natural cotton fiber with adsorbate copper sulfate as template. The carbon coated nano-Cu or micro-Cu was in situ prepared by taking cotton fiber with adsorbate copper sulfate as pyrolytic carbon source and commercial nano-copper or micro-copper as Cu source. The stability of the prepared material was characterized by TEM, XRD and Raman spectroscopy. The results show that NCCC is a typical material with carbon coated nano-Cu core-shell structure, and the carbon coated nano- or micron-Cu materials can be prepared by in-situ pyrolysis, which further confirmed that the pyrolysis atmosphere of cotton fiber could act as carbon source and in-situ reducing agent at the same time. And the oxidation resistance of carbon coated material was verified:the formation of carbon shells allows NCCC to maintain the phase composition of copper and cuprous oxide after exposure to air for 180 days or water for 35 days, and the commercial Cu nanoparticles covered with carbon shells have not been oxidized after 120 days of exposure to air.

Key wordscomposites    core-shell structure    in-situ thermolysis    nano-copper    stability
收稿日期: 2021-08-18     
ZTFLH:  TB333  
基金资助:国家自然科学基金(22005237);宁夏回族自治区自然科学基金(2021AAC03029);江苏省自然科学基金(BK20191188);江苏省引智项目(BX2020032)
作者简介: 宗平,女,1981年生,高级工程师
李世伟,男,1990年生,硕士
图1  NCCC的TEM照片和NCCC中铜颗粒粒径的统计
图2  NCCC的XRD谱
图3  Nano-Cu、Nano-Cu-air、Nano-Cu-air-Cotton和Nano-Cu-air-N2的TEM照片
图4  Nano-Cu和Micro-Cu热处理前后的拉曼谱和XRD谱
图5  Nano-Cu热重分析图
Sample namePhase composition
CuCu2OCuO
Nano-Cu
Nano-Cu-air
Nano-Cu-air- N2
Nano-Cu-air- Cotton×
表1  商业纳米铜处理前后的物相组成
图6  Micro-Cu、Micro-Cu-air、Micro-Cu-air-Cotton和Micro-Cu-air-N2的TEM照片
Sample namePhase composition
CuCu2OCuO
Micro-Cu××
Micro-Cu-air
Micro-Cu-air- N2
Micro-Cu-air- Cotton×
表2  商业微米铜处理前后的物相组成
图7  碳包覆纳米铜在不同环境放置不同时间后的XRD谱
1 Ruoff R S, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles [J]. Science, 1993, 259: 346
pmid: 17832348
2 Li H B, Kang W J, Xi B J, et al. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles [J]. Carbon, 2010, 48: 464
doi: 10.1016/j.carbon.2009.09.063
3 Chen Y J, Xiao G, Wang T S, et al. Porous Fe3O4/Carbon core/shell nanorods: synthesis and electromagnetic properties [J]. J. Phys. Chem. C, 2011, 115: 13603
doi: 10.1021/jp202473y
4 Wang S L, Huang X L, He Y H, et al. Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene [J]. Carbon, 2012, 50: 2119
doi: 10.1016/j.carbon.2011.12.063
5 Xue J, Xiang H K, Wang K P, et al. The preparation of carbon-encapsulated Fe/Co nanoparticles and their novel applications as bifunctional catalysts to promote the redox reaction for p-nitrophenol [J]. J. Mater. Sci., 2011, 47: 1737
doi: 10.1007/s10853-011-5953-2
6 El-Toni A M, Habila M A, Labis J P, et al. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures [J]. Nanoscale, 2016, 8: 2510
doi: 10.1039/c5nr07004j pmid: 26766598
7 Lu W J, Guo Y T, Luo Y Q, et al. Core-shell materials for advanced batteries [J]. Chem. Eng. J., 2019, 355: 208
doi: 10.1016/j.cej.2018.08.132
8 Chen Z, Chen M J, Yan H J, et al. Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids [J]. Appl. Therm. Eng., 2020, 178: 1
9 Chen X Y, Wu D L, Zhou P, et al. Modeling the solar absorption performance of Copper@Carbon core-shell nanoparticles [J]. J. Mater. Sci., 2021, 56: 13659
doi: 10.1007/s10853-021-06114-7
10 Pan S, Zhuang X, Wang B, et al. Preparation and properties of carbon coated manganese dioxide electrode materials [J]. Chin. J. Mater. Res., 2019, 33(7): 530
doi: 10.11901/1005.3093.2018.639
10 潘 双, 庄 雪, 王 冰 等. 碳包覆改性二氧化锰电极材料的制备和性能 [J]. 材料研究学报, 2019, 33(7): 530
11 Xu B S, Guo J J, Wang X M, et al. Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution [J]. Carbon, 2006, 44: 2631
doi: 10.1016/j.carbon.2006.04.024
12 Su L W, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures [J]. Nanoscale, 2011, 3: 3967
doi: 10.1039/c1nr10550g
13 Gawande M B, Goswami A, Felpin F-X, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis [J]. Chem. Rev., 2016, 116: 3722
doi: 10.1021/acs.chemrev.5b00482 pmid: 26935812
14 Liu P B, Gao S, Wang Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials [J]. Chem. Eng. J., 2020, 381: 122653
doi: 10.1016/j.cej.2019.122653
15 Huang X L, Hou L Z, Yu B W, et al. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures [J]. Acta Phys. Sin., 2013, 62: 108102
doi: 10.7498/aps.62.108102
15 黄小林, 侯丽珍, 喻博闻 等. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究 [J]. 物理学报, 2013, 62: 108102
16 Yu C, Qiu J S. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch [J]. Chem. Eng. Res. Des., 2008, 86: 904
doi: 10.1016/j.cherd.2008.02.006
17 Ma J F, Xing J X, Wang K, et al. Inspired by efficient cellulose-dissolving system: facile one-pot synthesis of biomass-based hydrothermal magnetic carbonaceous materials [J]. Carbohydr. Polym., 2017, 164: 127
doi: 10.1016/j.carbpol.2017.01.087
18 Li B, Zhou L, Wu D, et al. Photochemical chlorination of graphene [J]. ACS Nano, 2011, 5(7): 5957
doi: 10.1021/nn201731t pmid: 21657242
19 Crowther A C, Ghassaei A, Jung N, et al. Strong charge-transfer doping of 1 to 10 layer graphene by NO2 [J]. ACS Nano, 2012, 6(2): 1865
doi: 10.1021/nn300252a pmid: 22276666
20 Ammar M R, Galy N, Rouzaud J N, et al. Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing [J]. Carbon, 2015, 95: 364
doi: 10.1016/j.carbon.2015.07.095
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.