Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 609-616    DOI: 10.11901/1005.3093.2021.451
  研究论文 本期目录 | 过刊浏览 |
He+ 辐照对CLAM钢焊缝微观组织和性能的影响
刘丹1, 雷玉成1(), 张伟伟1, 李天庆1, 姚奕强2, 丁祥彬2
1.江苏大学材料科学与工程学院 镇江 212013
2.中广核研究院有限公司 深圳 518000
Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld
LIU Dan1, LEI Yucheng1(), ZHANG Weiwei1, LI Tianqing1, YAO Yiqiang2, DING Xiangbin2
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.China General Nuclear Power Corporation, Shenzhen 518000, China
引用本文:

刘丹, 雷玉成, 张伟伟, 李天庆, 姚奕强, 丁祥彬. He+ 辐照对CLAM钢焊缝微观组织和性能的影响[J]. 材料研究学报, 2022, 36(8): 609-616.
Dan LIU, Yucheng LEI, Weiwei ZHANG, Tianqing LI, Yiqiang YAO, Xiangbin DING. Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld[J]. Chinese Journal of Materials Research, 2022, 36(8): 609-616.

全文: PDF(19743 KB)   HTML
摘要: 

在室温下用强度为70 keV的He+辐照CLAM钢焊缝,使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和连续刚度纳米压痕技术(CSM)对其表征,研究了He+辐照对CLAM钢焊缝的微观组织和性能的影响。结果表明,随辐照剂量的增大焊缝表面黑色孔洞的尺寸增大、密度提高;辐照剂量为1×1017 ions·cm-2时,在两种焊缝中形成的位错环的尺寸分别约为18.97 nm、15.73 nm,数密度分别约为2.24×1021 m-3、1.78×1021 m-3,氦泡引起的辐照肿胀率分别约为1.7%和0.4%;辐照缺陷(位错环、氦泡)导致的辐照硬化率分别为49.0%和29.9%。与焊态焊缝相比,调质处理态焊缝的辐照损伤较弱,在一定程度上表明经调质处理后焊缝的抗辐照性能有所提高。

关键词 金属材料辐照硬化离子辐照调质处理CLAM钢焊缝    
Abstract

In order to explore the mechanism of the influence of ion irradiation on the microstructure and properties of as-welded and quenched and tempered welds, the welds of Low Activation Martensitic (CLAM) steel were subjected to He ion irradiation at room temperature of 70 keV. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Continuous Stiffness Measurement (CSM) detection methods were utilized to investigate the changes in microstructure and properties of CLAM steel welds before and after ion irradiation. The results show that the size and number density of black holes on the welds' surface after irradiation increased with the rising irradiation dose; at the irradiation dose of 1×1017 ions·cm-2, the sizes of dislocation loops formed in the two welds were 18.97 nm and 15.73 nm respectively and the number densities were 2.24×1021 m-3 and 1.78×1021 m-3 respectively; the irradiation swelling rates caused by helium bubbles were 1.7% and 0.4% respectively; the radiation hardening rate caused by irradiation defects (dislocation loops and helium bubbles) were 49.0% and 29.9%, respectively. However, compared with as-welded weld, the irradiation damage of quenched and tempered weld was relatively weaker after He ion irradiation. To a certain extent, it showed that the anti-irradiation performance of the weld after quenched and tempered was improved.

Key wordsmetallic materials    irradiation hardening    ion irradiation    quenched and tempered treatment    CLAM steel welds
收稿日期: 2021-08-13     
ZTFLH:  TL341  
基金资助:国家自然科学基金(51875264)
作者简介: 刘丹,女,1995年生,硕士生
ElementsCCrWVMnTaNiSiSPFe
Content0.128.91.440.200.350.150.020.080.003<0.0005Bal.
表1  CLAM钢的化学成分(质量分数,%)
图1  辐照损伤量随离子注入深度的变化曲线
图2  辐照剂量不同的焊态和调质处理态焊缝表面的SEM照片
图3  辐照前焊缝的金相和TEM照片以及碳化物的TEM-EDX分析
图4  辐照后焊缝中的位错环分布以及尺寸和数密度统计
图5  辐照后焊缝中氦泡的分布以及尺寸和密度统计
图6  辐照剂量不同的焊缝的纳米硬度与压入深度的关系
Fluence/ions·cm-205×10155×10161×1017
H0/GPaAs-welded weld5.15.697.037.6
H0/GPaQuenched and tempered weld3.543.764.264.6
表2  由Nix-Gao模型所得焊缝辐照层的真实硬度值H0
图7  焊态和调质处理态焊缝的纳米硬度与辐照损伤的关系
1 Holdren J P. Fusion energy in context: Its Fitness for the long term [J]. Sci, 1978, 200: 168
2 Fu Z Y, Wang Z Q, Liu P P, et al. Irradiation hardening and defects distribution in CLAM steel under deuterium and helium ion irradiation [J]. Chin. J. Mater. Res., 2016, 30(9): 641
2 付振宇, 王泽群, 刘平平 等. 氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变 [J]. 材料研究学报, 2016, 30(9): 641
3 Abdou M A, Morley N B, Molentsev S, et al. Blanket/first wall challenges and required R&D on the pathway to DEMO [J]. Fusion Eng. Des., 2015, 100: 2
doi: 10.1016/j.fusengdes.2015.07.021
4 Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He-ion-irradiated CLAM steel studied by cross-sectional transmission electron microscopy [J]. J. Alloys Compd., 2015, 649: 859
doi: 10.1016/j.jallcom.2015.07.177
5 Peng L, Huang Q Y, Wu Y C, et al. In-situ observation of dislocation loop induced by electron irradiation on china low activation martensitic steel[J]. A. Eng. Sci. Tech., 2007, 41: 407
5 彭 蕾, 黄群英, 吴宜灿 等. 中国低活化马氏体钢在电子辐照下产生位错环的原位观察 [J]. 原子能科学技术, 2007, 41: 407
6 Jiang S, Peng L, Ge H, et al. He and H irradiation effects on the nanoindentation hardness of CLAM steel [J]. J. Nucl. Mater, 2014, 455(1): 335
doi: 10.1016/j.jnucmat.2014.06.053
7 Zhao F, Qiao J S, Huang Y N, et al. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM) [J]. Mater. Charact., 2008, 59 (3): 344
doi: 10.1016/j.matchar.2007.01.014
8 Hu J, Jiang Z Z, Huang J H, et al. Effect of heat treatment on microstructure and impact toughness of CLAM steel electron beam weld [J]. Tran. China Welding Ins., 2012, 33(11): 67
8 胡 杰, 姜志忠, 黄继华 等. 热处理工艺对CLAM钢电子束焊缝显微组织与冲击韧性的影响 [J]. 焊接学报, 2012, 33(11): 67
9 Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure [J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2013, 310: 75
doi: 10.1016/j.nimb.2013.05.008
10 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19(1): 3
doi: 10.1557/jmr.2004.19.1.3
11 Ni K, Ma Q, Wan H, et al. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys [J]. Mater. Res. Express, 2018, 5(2): 026514
12 Cai J, Zou Y, Wan M Z, et al. Rapid preparation and characterization of surface microstructures of AISI 304L austenitic stainless steel by high-current pulsed electron beam [J]. Chin. J High Pressure Phys., 2012, 26(6): 693
12 蔡 杰, 邹 阳, 万明珍 等. AISI 304L奥氏体不锈钢表面微孔结构的强流脉冲电子束快速制备与表征 [J]. 高压物理学报, 2012, 26(6): 693
13 Liu S, Huang Q, Lei P, et al. Microstructure and its influence on mechanical properties of CLAM steel [J]. Fusion Eng. Des., 2012, 87(9): 1628
doi: 10.1016/j.fusengdes.2012.06.008
14 Bhattacharya A, Meslin E, Henry J, et al. Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe-Cr alloys [J]. Acta Mater., 2014, 78(1): 394
doi: 10.1016/j.actamat.2014.06.050
15 Li Meimei, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92(16): 2048
doi: 10.1080/14786435.2012.662601
16 Oka H, Watanabe M, Kinoshita H, et al. In situ observation of damage structure in ODS austenitic steel during electron irradiation [J]. J. Nucl. Mater., 2011, 417(1-3): 279
doi: 10.1016/j.jnucmat.2010.12.156
17 Brimbal D, Décamps B, Barbu A, et al. Dual-beam irradiation of α-iron: Heterogeneous bubble formation on dislocation loops [J]. J. Nucl. Mater., 2011, 418(1-3): 313
doi: 10.1016/j.jnucmat.2011.06.048
18 Evans J H. The role of implanted gas and lateral stress in blister formation mechanisms [J]. J. Nucl. Mater., 1978, 76-77: 228
doi: 10.1016/0022-3115(78)90145-9
19 Toloczko M B, Garner F A, Voyevodin V N, et al. Induced swelling of ODS ferritic alloy MA957 tubing to 500 DPA [J]. J. Nucl. Mater., 2014, 453: 323
doi: 10.1016/j.jnucmat.2014.06.011
20 Fave L, Pouchon M A, Döbeli M, et al. Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels [J]. J. Nucl. Mater., 2014, 445(1-3): 235
doi: 10.1016/j.jnucmat.2013.11.004
21 Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46(3): 411
doi: 10.1016/S0022-5096(97)00086-0
22 Kiener D, Minor A M, Anderoglu O, et al. Application of small-scale testing for investigation of ion-beam-irradiated materials [J]. J. Mater. Res., 2012, 27(21): 2724
doi: 10.1557/jmr.2012.303
23 Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques [J]. Fusion Eng. Des., 2011, 86(9-11): 2658
doi: 10.1016/j.fusengdes.2011.03.073
24 Yabuuchi K, Saito M, Kasada R, et al. Neutron irradiation hardening and microstructure changes in Fe-Mn binary alloys [J]. J. Nucl. Mater., 2011, 414(3): 498
doi: 10.1016/j.jnucmat.2011.05.008
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.