Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 617-627    DOI: 10.11901/1005.3093.2021.360
  研究论文 本期目录 | 过刊浏览 |
热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响
陈杰1, 李红英1(), 周文浩2, 张青学2, 汤伟2, 刘丹2
1.中南大学材料科学与工程学院 长沙 410083
2.湖南华菱湘潭钢铁有限公司 湘潭 411101
Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints
CHEN Jie1, LI Hongying1(), ZHOU Wenhao2, ZHANG Qingxue2, TANG Wei2, LIU Dan2
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Xiangtan Iron & Steel Co. Ltd. of Hunan Valin, Xiangtan 411101, China
引用本文:

陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
Jie CHEN, Hongying LI, Wenhao ZHOU, Qingxue ZHANG, Wei TANG, Dan LIU. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. Chinese Journal of Materials Research, 2022, 36(8): 617-627.

全文: PDF(10685 KB)   HTML
摘要: 

采用10 kJ/cm和15 kJ/cm两种焊接热输入对Q1100超高强钢进行熔化极气体保护焊,研究焊接接头的组织性能及局部腐蚀行为。结果表明:两种热输入焊接接头的焊缝组织主要为针状铁素体和少量的粒状贝氏体,粗晶区组织均为板条贝氏体,细晶区组织均为板条贝氏体和粒状贝氏体,临界相变区组织为多边形铁素体、马奥岛和碳化物的混合组织。两种热输入焊接接头中电荷转移电阻均为母材>热影响区>焊缝区,母材耐蚀性最好,热影响区次之,焊缝区耐蚀性最差。在腐蚀过程中,焊缝区作为阳极最先被腐蚀,当腐蚀一定时间后,腐蚀位置发生改变,阳极腐蚀区域转移到母材区,而焊缝区作为阴极得到保护。热输入为10 kJ/cm时,焊接接头具有更好的低温韧性和耐蚀性,其焊缝和热影响区-40℃冲击功分别为46.5 J和30.2 J。

关键词 金属材料Q1100超高强钢SVET热输入焊接接头耐腐蚀性能    
Abstract

Welded joints of Q1100 ultra high strength steel were made via gas shielded arc welding with welding heat inputs of 10 kJ/cm and 15 kJ/cm respectively. The microstructure, mechanical properties and local corrosion behavior of welded joints were studied. The results show that the microstructure of weld zone for the two welded joints is mainly acicular ferrite and a small amount of granular bainite. The microstructure is lath bainite for the coarse grain zone, and lath bainite and granular bainite for the fine grain zone of the weld joints. The microstructure of the critical phase transition zone is a mixture of polygonal ferrite, Mayo islets and carbide. The charge transfer resistance of various portions of the two welded joints could be ranked as the following order: base metal > heat affected zone > weld zone. The base metal had the best corrosion resistance, followed by the heat affected zone, and the weld zone had the worst corrosion resistance. During the corrosion process, the weld zone was first corroded as an anode. After a certain time of corrosion, the corrosion position changed, and the anode corrosion area was transferred into the base metal, while the weld zone was protected as a cathode. The welded joint with heat input of 10 kJ/cm has better low temperature toughness and corrosion resistance. The impact energies are 46.5 J and 30.2 J for the weld zone and heat affected zone respectively at -40℃.

Key wordsmetallic materials    Q1100 ultra high strength steel    scanning vibrating electrode technique    heat input    welded joint    corrosion resistance
收稿日期: 2021-06-16     
ZTFLH:  TG172.2  
基金资助:长株潭国家自主创新示范区专项(2018XK2301)
作者简介: 陈杰,男,1996年生,硕士生
CSiMnPSNbVTiNiCrMoBAlFe
0.150.301.120.0090.0020.0220.0530.0180.320.210.540.00180.03Bal.
表1  实验钢的化学成分(质量分数,%)
图1  实验钢原始组织的SEM照片
图2  焊接实验用钢板尺寸
图3  焊接接头截面取样示意图
图4  焊接接头表面取样示意图
图5  电化学试样示意图
图6  两种热输入条件下焊缝区的SEM照片
图7  两种热输入条件下熔合区的SEM照片
图8  两种热输入焊接接头热影响区的SEM照片
图9  两种热输入焊接接头的电化学阻抗谱
图10  焊接接头硬度分布曲线
图11  两种热输入焊接接头-40℃冲击功对比
图12  等效电路图
Heat inputDifferent regionsRs/Ω·cm2Rt/Ω·cm2Y0-1·cm-2·s-nn
10 kJ/cmHAZ7.6922423.609×10-40.8297
WZ11.9819222.485×10-40.8365
BM13.4725403.687×10-40.8326
15 kJ/cmHAZ8.5920863.809×10-40.8392
WZ9.4618833.443×10-40.8322
BM13.4725403.687×10-40.8326
表2  电化学阻抗谱拟合的电化学参数
图13  10 kJ/cm焊接接头腐蚀不同时间后表面电流密度分布图及其宏观腐蚀形貌
图14  15 kJ/cm焊接接头腐蚀不同时间后表面电流密度分布图及其宏观腐蚀形貌
图15  两种焊接接头表面平均腐蚀电流分布曲线
1 Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa [J]. J. Mater. Sci., 2018, 53: 6968
doi: 10.1007/s10853-018-2042-9
2 Song X, Yang H F, Wang C, et al. Microstructures and properties of 1100 MPa grade ultra-high strength steel after heat treatments [J]. J. Iron Steel Res., 2019, 31: 592
2 宋 欣, 杨海峰, 王 川 等. 屈服强度1100 MPa级超高强钢热处理组织及性能 [J]. 钢铁研究学报, 2019, 31: 592
3 Wang Y Q, Liu X Y, Shi Y J. The fracture toughness of butt weld at low temperature of 960 MPa high-strength steel [J]. Chin. J. Mater. Res., 2013, 27: 237
3 王元清, 刘希月, 石永久. 960 MPa高强度钢材对接焊缝的低温断裂韧性 [J]. 材料研究学报, 2013, 27: 237
4 Cao C M, Gao Q, Zhang H C, et al. Research and application on welding process of Q890 high-strength steel [J]. Hot Work. Technol., 2016, 45(11): 207
4 曹成铭, 高 强, 张含臣 等. Q890高强钢焊接工艺研究与应用 [J]. 热加工工艺, 2016, 45(11): 207
5 Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel [J]. Mater. Des., 2014, 60: 678
doi: 10.1016/j.matdes.2014.03.057
6 Chen L, Nie P L, Qu Z X, et al. Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800 MPa grade high-strength low-alloy steel [J]. J. Manuf. Process., 2020, 50: 132
doi: 10.1016/j.jmapro.2019.12.007
7 Deng L, Yin X H, Yuan Z T, et al. Effect of heat input on microstructure and properties of weld joints of 800 MPa grade high strength low alloy steel [J]. Hot Work. Technol., 2015, 44(1): 36
7 邓 磊, 尹孝辉, 袁中涛 等. 焊接热输入对800 MPa级低合金高强钢焊接接头组织性能的影响 [J]. 热加工工艺, 2015, 44(1): 36
8 Sun Q L, Cao B, Wu Y S. Electrochemical behavior of various micro-areas on the welded joint of Q235 steel [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 41
8 孙齐磊, 曹 备, 吴荫顺. Q235管线钢焊接接头微区电化学行为 [J]. 北京科技大学学报, 2009, 31: 41
9 Zhang T Y, Liu W, Chowwanonthapunya T, et al. Corrosion evolution and analysis of welded joints of structural steel performed in a tropical marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 5057
doi: 10.1007/s11665-020-05045-9
10 Wang L W, Du C W, Liu Z Y, et al. SVET Characterization of localized corrosion of welded X70 pipeline steel in acid solution [J]. Corros. Prot., 2012, 33: 935
10 王力伟, 杜翠薇, 刘智勇 等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究 [J]. 腐蚀与防护, 2012, 33: 935
11 Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
11 陈兴伟, 吴建华, 王 佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363
12 Liu P, Han S G, Yi Y Y, et al. Corrosion behavior of welded joint of Q690 with CMT twin [J]. Int. J. Corros., 2018, 2018: 2368717
13 Hemmingsen T, Hovdan H, Sanni P, et al. The influence of electrolyte reduction potential on weld corrosion [J]. Electrochim. Acta, 2002, 47: 3949
doi: 10.1016/S0013-4686(02)00366-3
14 Li Y J. Welding Metallurgy [M]. Beijing: Chemical Industry Press, 2015: 160
14 李亚江. 焊接冶金原理 [M]. 北京: 化学工业出版社, 2015: 160
15 Zhang L, Wu S J, Sun G J, et al. Surface grain boundary characteristics and electrochemical behavior of hot rolled high Ni high strength steel [J]. Chin. J. Mater. Res., 2014, 28: 67
15 张 蕾, 吴素君, 孙国进 等. 热轧高Ni高强钢的表面晶界特征和电化学行为 [J]. 材料研究学报, 2014, 28: 67
16 Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
17 Xu B, Ma C Y, Li L, et al. Effect of heat input on microstructure and property of weld joints of a 1200 MPa grade HSLA steel [J]. Chin. J. Mater. Res., 2017, 31: 129
17 徐 彬, 马成勇, 李 莉 等. 热输入对1200 MPa级HSLA钢焊缝组织性能的影响 [J]. 材料研究学报, 2017, 31: 129
18 Zhang X Z, Chen Y Q, Wang F H, et al. Low temperature impact toughness of welded joint of X70 pipeline steel after hardening and tempering [J]. Trans. Mater. Sci. Heat Treat., 2018, 39(6): 156
18 张侠洲, 陈延请, 王凤会 等. X70管线钢焊接接头调质处理后的低温冲击韧性 [J]. 材料热处理学报, 2018, 39(6): 156
19 Lu Y X. Research on the CO2 corrosion behavior of carbon steel welded joint and the development of corrosion resistance welding materials [D]. Tianjin: Tianjin University, 2017
19 路永新. 碳钢焊接接头CO2腐蚀行为及耐蚀焊材开发的研究 [D]. 天津: 天津大学, 2017
20 Wan X L, Li G Q, Wu K M. Microstructure characteristics and formation mechanism of acicular ferrite in high-strength low-alloy steels [J]. J. Iron Steel Res., 2016, 28(6): 1
doi: 10.1007/s42243-020-00463-4
20 万响亮, 李光强, 吴开明. 低合金高强钢针状铁素体组织特征和形成机理 [J]. 钢铁研究学报, 2016, 28(6): 1
21 Huang C, Huang F, Zhang Y, et al. Galvanic corrosion behavior for weld joint of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 527
21 黄 宸, 黄 峰, 张 宇 等. 高强耐候钢焊接接头电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 527
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.