材料研究学报, 2022, 36(8): 609-616 DOI: 10.11901/1005.3093.2021.451

研究论文

He+ 辐照对CLAM钢焊缝微观组织和性能的影响

刘丹1, 雷玉成,1, 张伟伟1, 李天庆1, 姚奕强2, 丁祥彬2

1.江苏大学材料科学与工程学院 镇江 212013

2.中广核研究院有限公司 深圳 518000

Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld

LIU Dan1, LEI Yucheng,1, ZHANG Weiwei1, LI Tianqing1, YAO Yiqiang2, DING Xiangbin2

1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

2.China General Nuclear Power Corporation, Shenzhen 518000, China

通讯作者: 雷玉成,教授,yclei@ujs.edu.cn,研究方向为焊接接头腐蚀行为和先进连接方法

责任编辑: 黄青

收稿日期: 2021-08-13   修回日期: 2022-02-27  

基金资助: 国家自然科学基金(51875264)

Corresponding authors: LEI Yucheng, Tel:(0511)88790798, E-mail:yclei@ujs.edu.cn

Received: 2021-08-13   Revised: 2022-02-27  

Fund supported: National Natural Science Foundation of China(51875264)

作者简介 About authors

刘丹,女,1995年生,硕士生

摘要

在室温下用强度为70 keV的He+辐照CLAM钢焊缝,使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和连续刚度纳米压痕技术(CSM)对其表征,研究了He+辐照对CLAM钢焊缝的微观组织和性能的影响。结果表明,随辐照剂量的增大焊缝表面黑色孔洞的尺寸增大、密度提高;辐照剂量为1×1017 ions·cm-2时,在两种焊缝中形成的位错环的尺寸分别约为18.97 nm、15.73 nm,数密度分别约为2.24×1021 m-3、1.78×1021 m-3,氦泡引起的辐照肿胀率分别约为1.7%和0.4%;辐照缺陷(位错环、氦泡)导致的辐照硬化率分别为49.0%和29.9%。与焊态焊缝相比,调质处理态焊缝的辐照损伤较弱,在一定程度上表明经调质处理后焊缝的抗辐照性能有所提高。

关键词: 金属材料; 辐照硬化; 离子辐照; 调质处理; CLAM钢焊缝

Abstract

In order to explore the mechanism of the influence of ion irradiation on the microstructure and properties of as-welded and quenched and tempered welds, the welds of Low Activation Martensitic (CLAM) steel were subjected to He ion irradiation at room temperature of 70 keV. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Continuous Stiffness Measurement (CSM) detection methods were utilized to investigate the changes in microstructure and properties of CLAM steel welds before and after ion irradiation. The results show that the size and number density of black holes on the welds' surface after irradiation increased with the rising irradiation dose; at the irradiation dose of 1×1017 ions·cm-2, the sizes of dislocation loops formed in the two welds were 18.97 nm and 15.73 nm respectively and the number densities were 2.24×1021 m-3 and 1.78×1021 m-3 respectively; the irradiation swelling rates caused by helium bubbles were 1.7% and 0.4% respectively; the radiation hardening rate caused by irradiation defects (dislocation loops and helium bubbles) were 49.0% and 29.9%, respectively. However, compared with as-welded weld, the irradiation damage of quenched and tempered weld was relatively weaker after He ion irradiation. To a certain extent, it showed that the anti-irradiation performance of the weld after quenched and tempered was improved.

Keywords: metallic materials; irradiation hardening; ion irradiation; quenched and tempered treatment; CLAM steel welds

PDF (19743KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘丹, 雷玉成, 张伟伟, 李天庆, 姚奕强, 丁祥彬. He+ 辐照对CLAM钢焊缝微观组织和性能的影响[J]. 材料研究学报, 2022, 36(8): 609-616 DOI:10.11901/1005.3093.2021.451

LIU Dan, LEI Yucheng, ZHANG Weiwei, LI Tianqing, YAO Yiqiang, DING Xiangbin. Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld[J]. Chinese Journal of Materials Research, 2022, 36(8): 609-616 DOI:10.11901/1005.3093.2021.451

核能的能量密度高,是一种理想的清洁能源[1]。聚变堆第一壁结构材料受到氘-氚反应产生的14 MeV中子、带电粒子以及电磁辐射的强烈作用,其微观组织和性能发生变化[2]

低活化马氏体钢(CLAM,一种低活化铁素体/马氏体钢),是聚变堆第一壁首选结构材料[3]。结构件的焊缝是焊接接头的薄弱部位,其抗辐照性能损伤关乎整个结构件服役的安全性和稳定性。针对CLAM钢母材的辐照损伤,已进行了大量研究。辐照后CLAM钢的晶界和相界处易生成气泡和位错环,随着辐照剂量的增加其尺寸增大、数密度提高[4,5]。同时,辐照硬化与辐照缺陷(气泡、位错环)的尺寸、数密度和辐照损伤量有密切的关系[6,7];气泡的形成也使材料发生辐照肿胀。本文对比研究He+辐照对CLAM钢焊态和调质处理态焊缝表面形貌、微观组织和纳米硬度的影响。

1 实验方法

1.1 样品的制备

实验用CLAM钢的型号为HEAT-1506,材料,其化学成分列于表1

表1   CLAM钢的化学成分(质量分数,%)

Table 1  Chemical composition of CLAM steel (mass fraction, %)

ElementsCCrWVMnTaNiSiSPFe
Content0.128.91.440.200.350.150.020.080.003<0.0005Bal.

新窗口打开| 下载CSV


焊前在5 mm厚的焊件上开一个60° V形坡口,用无水乙醇和丙酮对坡口及其两侧充分清洗以去除表面的油污。实验中进行手工钨极氩弧焊(TIG焊),焊接参数为:电压12 V,打底焊电流为120 A,盖面焊电流为125 A,氩气流量10 L·min-1,焊接速度1 mm·s-1。为了消除焊后残余应力和焊接变形得到良好的焊缝金属组织,对部分焊板进行焊后调质处理[8](980℃/0.5 h淬火(水冷)+760℃/2 h回火(空冷))。垂直于焊缝区域切下尺寸为10 mm×8 mm×2 mm的试样,用于观察辐照后表面形貌和纳米压痕测试,尺寸为10 mm×10 mm×0.5 mm的试样用于透射电镜观察。将试样表面研磨和机械抛光至镜面,超声洗净吹干后用于离子辐照实验。

1.2 离子辐照实验

用四川大学原子核技术研究所的GH-200离子注入机进行离子辐照实验,辐照靶室的温度为室温,辐照能量为70 keV,离子束流为60 μA,辐照剂量分别为5×1015 ions·cm-2、5×1016 ions·cm-2、1×1017 ions·cm-2图1给出了使用SRIM 2013[9]软件模拟得到的三种辐照剂量下辐照损伤量与离子注入深度的关系。由图1可见,离子注入深度约为500 nm,辐照损伤量呈现出先升高后降低的趋势,各辐照剂量下的辐照损伤量分别约为0.06 dpa、0.67 dpa、1.33 dpa。

图1

图1   辐照损伤量随离子注入深度的变化曲线

Fig.1   Variation curve of irradiation damage with ion implantation depth


1.3 性能表征

用型号为FEI Nova Nano 450的扫描电子显微镜(SEM)观察辐照前后CLAM钢焊缝的表面形貌,用FEI tecnai-F20型透射电镜表征辐照前焊态和调质处理态焊缝的微观组织和离子辐照后焊缝微观组织(位错环、氦泡)。用于透射电镜观察的透射试样厚度约为50 nm且辐照面不能受到破坏,故使用Gatan PIPS II离子减薄仪将试样单面减薄至所要求厚度。使用SRIM软件模拟辐照损伤层的厚度。用纳米压痕技术,即通过计算机程序控制载荷发生连续变化实时测量压痕深度[10]。仪器的型号为Agilent Nano Indenter G200,用Berkovich三棱锥型压头,载荷分辨率为50 nN,应变速率为0.05-1。用CSM连续刚度测试,每个样品选取8个测试点,每点的最大压入深度为1000 nm,对有效数据做均值化处理。

2 结果和讨论

2.1 辐照后表面形貌的变化

图2给出了辐照后焊态和调质处理态焊缝表面形貌放大10000倍的SEM照片。由图1a,b可以看出,辐照前两种焊缝的表面均比较光滑,受到不同剂量的He+轰击后焊缝表面出现的尺寸和数量不等的孔洞。辐照剂量较小时焊缝表面零散分布着尺寸较小的黑色孔洞(图1c,d),但是调质处理态焊缝表面的孔洞较少且出现黑斑,黑斑是辐照点缺陷未聚集成团的表现。随着辐照剂量的增加焊缝表面孔洞的尺寸增大和密度提高,与焊态焊缝相比调质处理态焊缝表面的孔洞尺寸较小和数量较少。在辐照过程中入射离子与靶原子间的非弹性碰撞导致靶材表面发生原子溅射,从而形成黑色孔洞[11]。同时,试样表面受高能离子轰击后快速升温而与试样内部产生温度梯度,空位型点缺陷在热应力的作用下迁移至试样表面而形成孔洞[12]。随着辐照剂量的增加空位型缺陷聚集长大并迁移至表面,从而在焊缝表面形成尺寸较大,数量较多的黑色孔洞。

图2

图2   辐照剂量不同的焊态和调质处理态焊缝表面的SEM照片

Fig.2   SEM morphological changes of two kinds of weld surfaces under different irradiation doses (a, c, e, g) 0, 5×1015, 5×1016, 1×1017 ions·cm-2 of as-welded welds; (b, d, f, h) 0, 5×1015, 5×1016, 1×1017 ions·cm-2 of quenched and tempered welds


2.2 微观组织观察

2.2.1 金相照片和TEM照片

图3给出了辐照前焊缝的试样的金相和TEM照片。由图3a可见,焊态焊缝的金相组织主要为板条马氏体和δ-Fe(图中箭头所示)。调质处理态焊缝的金相组织为晶粒细小、均匀分布的回火马氏体组织,其中δ-Fe已完全消除。图1c给出了焊态焊缝的TEM照片,可见平行排列的板条马氏体,尺寸为0.26~0.57 μm,马氏体内部为高密度缠结的位错亚结构,密度为0.6×1012 cm-2。调质处理后,组织变为板条特征更明显的回火马氏体,马氏体板条内部的位错因运动而大量湮灭,密度有所降低。同时,沿马氏体边界析出了棒状富Cr的M23C6型碳化物和细小圆球状富Ta的MC型碳化物[13],图1e,f为其TEM-EDX分析。

图3

图3   辐照前焊缝的金相和TEM照片以及碳化物的TEM-EDX分析

Fig.3   Optical and TEM microstructure observation of welds and TEM-EDX analysis of carbides before irradiation (a, c) as-welded weld; (b, d) quenched and tempered weld; (e) Cr-rich M23C6 carbides; (f) Ta-rich MC particles


2.2.2 位错环

为了更好地了解辐照后材料中微观组织的演变,用TEM观察和分析最高剂量(1×1017 ions·cm-2)辐照后的试样。

辐照产生的空位和间隙原子等点缺陷聚集形成位错环[14],图4a,b给出了辐照后焊缝晶界处位错环的分布,右上角为其衍射花样标定。图4c,d为位错环的放大图和高分辨率图。根据不可见判据g·b=0,g=200时材料中产生b=<100>的位错环。为了更准确地计算位错环的尺寸和数密度,各选取三个图示大小相同的区域进行均值化统计,结果在图4e,f中给出。焊态焊缝中位错环的尺寸为18.97 nm、数密度为2.24×1021 m-3;调质处理态焊缝中位错环尺寸为15.73 nm,数密度为1.78×1021 m-3。界面作为缺陷阱捕获辐照点缺陷,降低了位错环的形核率[15,16]。焊缝经调质处理后,细小的晶界以及析出的碳化物和基体间的共界面都成为吸引辐照点缺陷的位点,从而降低了调质处理态焊缝中位错环的尺寸和数密度。

图4

图4   辐照后焊缝中的位错环分布以及尺寸和数密度统计

Fig.4   Dislocation loops distribution and size and number density statistics of irradiated welds (a, c, e) as-welded welds; (b, d, f)quenched and tempered welds


2.2.3 氦泡

He在材料中的溶解度较低但是其扩散激活能也较低,当其浓度超过阈值时氦泡在晶界处形核并吸收He原子、空位和He-V复合体长大。对比图5a,b可见,焊态焊缝的晶界处生成了尺寸较大且密集的氦泡。为了更具体地了解氦泡的尺寸和数密度,各选取三个图示大小相同的区域进行均值化统计,结果在图5c,d中给出。可以看出,氦泡的尺寸分别为2.47 nm和1.70 nm,分布密度分别为2.7×1023 m-3和2.1×1023 m-3。位错环和氦泡相互作用,一方面位错环捕获He原子有利于氦泡聚集成泡,另一方面He团簇的尺寸和内压逐渐增大时为了保持材料内部的应变平衡,He团簇将临近的原子挤出而生成间隙型位错环,氦泡得以长大[17,18]

图5

图5   辐照后焊缝中氦泡的分布以及尺寸和密度统计

Fig.5   Helium bubbles distribution and size and number density statistics of irradiated welds (a, c) as-welded welds;(b, d)quenched and tempered welds


氦泡增大材料的体积,导致辐照肿胀。利用统计出的氦泡的尺寸、数密度和试样厚度等参数,根据公式

S=ΔVV×100%=43πr3V×100%

可计算出材料的有效肿胀率S[19],式中∆V为氦泡的体积之和,V为氦泡统计区域的试样体积,r近似为球体半径。结果表明,焊缝的辐照肿胀率分别为1.7%和0.4%,调质处理态焊缝的辐照肿胀率比焊态焊缝的小,在一定程度上说明其抗辐照肿胀性能较好。

2.3 纳米硬度

反压痕尺寸效应[20]和材料表面不平整影响测试数据,h<50 nm的数据不参与处理分析。图6a,b给出了纳米硬度与深度的关系。由图6可见,纳米硬度随着压入深度的增加而减小,最后趋于稳定。

图6

图6   辐照剂量不同的焊缝的纳米硬度与压入深度的关系

Fig.6   Nano-hardness vs. indentation depth after different implanted ion fluence (a, c) as-welded welds; (b, d) quenched and tempered welds


为了更准确地反映材料辐照层的硬度,采用Nix-Gao模型[21]

H=H01+h*h
H2=H021+h*h

进行数据处理,结果在图6c,d中给出,曲线的纵坐标为H2,横坐标为1/h。式中H为所测纳米硬度值;H0 为材料辐照层的真实硬度;h*为材料的特征长度,与压头尺寸有关。根据曲线的截距可计算材料辐照层真实硬度值H0,结果列于表2。由图6c可见,焊态焊缝的曲线出现了一定转折。这表明,焊缝中有一个两种硬度相差较大的区域,即辐照损伤区和基体,此为软基体效应[22]。这个转折点的位置约在60 nm~100 nm处,其深度远小于SRIM模拟所得的辐照损伤层厚度(500 nm)。其原因是,压头压入材料产生的塑性变形区域约为压入深度的5~7倍[23],使理论计算出的转折点在70 nm~100 nm处,与实验结果相符。

表2   由Nix-Gao模型所得焊缝辐照层的真实硬度值H0

Table 2  The real hardness value H0 of welds' irradiated layer based on the Nix-Gao model

Fluence/ions·cm-205×10155×10161×1017
H0/GPaAs-weldedweld5.15.697.037.6
H0/GPaQuenchedandtemperedweld3.543.764.264.6

新窗口打开| 下载CSV


表2可见,焊态和调质处理态焊缝的辐照硬化率分别为49.0%和29.9%,利用Origin对纳米硬度值H0 与辐照损伤量(DPA)进行幂函数

H0=a×DPAb

拟合。式中a为拟合参数,表示同一辐照损伤量下,焊缝的硬化程度;b为拟合函数的幂指数。焊态焊缝中a≈7.36,b≈0.09,调质处理态焊缝中a≈4.46,b≈0.06,可见调质处理的焊缝其硬化程度较低,在一定程度上表明其抗离子辐照硬化性能更好。

图7给出了纳米硬度值与辐照损伤量的幂函数拟合曲线。图7表明,随辐照损伤的增大纳米硬度随之增大,但是最终趋于饱和。产生辐照硬化的原因,主要是摩擦硬化[24]。位错环和氦泡钉扎位错而阻碍其运动,从而使材料的硬度提高。而在调质处理态焊缝中细小的晶界、析出的碳化物和基体间的共界面都能捕获辐照点缺陷,降低了位错环和氦泡的形核率,使其辐照硬化程度较低。

图7

图7   焊态和调质处理态焊缝的纳米硬度与辐照损伤的关系

Fig.7   Relationship between nano-hardness value of as-welded and quenched and tempered welds and irradiation damage


3 结论

(1) 随着辐照剂量的增加CLAM钢焊缝表面黑色孔洞的尺寸增大、密度提高,调质处理态焊缝表面形成的黑色孔洞比焊态焊缝少。

(2) 与焊态焊缝相比,调质处理态焊缝经He+辐照形成的黑色孔洞和辐照点缺陷(位错环、氦泡)尺寸和数密度都较小,引起的辐照硬化较低,表明调质处理使焊缝的抗辐照性能提高。

参考文献

Holdren J P.

Fusion energy in context: Its Fitness for the long term

[J]. Sci, 1978, 200: 168

[本文引用: 1]

Fu Z Y, Wang Z Q, Liu P P, et al.

Irradiation hardening and defects distribution in CLAM steel under deuterium and helium ion irradiation

[J]. Chin. J. Mater. Res., 2016, 30(9): 641

[本文引用: 1]

付振宇, 王泽群, 刘平平 .

氘和氦离子辐照下CLAM钢的辐照硬化与微结构演变

[J]. 材料研究学报, 2016, 30(9): 641

[本文引用: 1]

Abdou M A, Morley N B, Molentsev S, et al.

Blanket/first wall challenges and required R&D on the pathway to DEMO

[J]. Fusion Eng. Des., 2015, 100: 2

DOI      URL     [本文引用: 1]

Liu P P, Zhan Q, Fu Z Y, et al.

Surface and internal microstructure damage of He-ion-irradiated CLAM steel studied by cross-sectional transmission electron microscopy

[J]. J. Alloys Compd., 2015, 649: 859

DOI      URL     [本文引用: 1]

Peng L, Huang Q Y, Wu Y C, et al.

In-situ observation of dislocation loop induced by electron irradiation on china low activation martensitic steel

[J]. A. Eng. Sci. Tech., 2007, 41: 407

[本文引用: 1]

彭 蕾, 黄群英, 吴宜灿 .

中国低活化马氏体钢在电子辐照下产生位错环的原位观察

[J]. 原子能科学技术, 2007, 41: 407

[本文引用: 1]

Jiang S, Peng L, Ge H, et al.

He and H irradiation effects on the nanoindentation hardness of CLAM steel

[J]. J. Nucl. Mater, 2014, 455(1): 335

DOI      URL     [本文引用: 1]

Zhao F, Qiao J S, Huang Y N, et al.

Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)

[J]. Mater. Charact., 2008, 59 (3): 344

DOI      URL     [本文引用: 1]

Hu J, Jiang Z Z, Huang J H, et al.

Effect of heat treatment on microstructure and impact toughness of CLAM steel electron beam weld

[J]. Tran. China Welding Ins., 2012, 33(11): 67

[本文引用: 1]

胡 杰, 姜志忠, 黄继华 .

热处理工艺对CLAM钢电子束焊缝显微组织与冲击韧性的影响

[J]. 焊接学报, 2012, 33(11): 67

[本文引用: 1]

Stoller R E, Toloczko M B, Was G S, et al.

On the use of SRIM for computing radiation damage exposure

[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2013, 310: 75

DOI      URL     [本文引用: 1]

Oliver W C, Pharr G M.

Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology

[J]. J. Mater. Res., 2004, 19(1): 3

DOI      URL     [本文引用: 1]

Ni K, Ma Q, Wan H, et al.

Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

[J]. Mater. Res. Express, 2018, 5(2): 026514

[本文引用: 1]

Cai J, Zou Y, Wan M Z, et al.

Rapid preparation and characterization of surface microstructures of AISI 304L austenitic stainless steel by high-current pulsed electron beam

[J]. Chin. J High Pressure Phys., 2012, 26(6): 693

[本文引用: 1]

蔡 杰, 邹 阳, 万明珍 .

AISI 304L奥氏体不锈钢表面微孔结构的强流脉冲电子束快速制备与表征

[J]. 高压物理学报, 2012, 26(6): 693

[本文引用: 1]

Liu S, Huang Q, Lei P, et al.

Microstructure and its influence on mechanical properties of CLAM steel

[J]. Fusion Eng. Des., 2012, 87(9): 1628

DOI      URL     [本文引用: 1]

Bhattacharya A, Meslin E, Henry J, et al.

Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe-Cr alloys

[J]. Acta Mater., 2014, 78(1): 394

DOI      URL     [本文引用: 1]

Li Meimei, Kirk M A, Baldo P M, et al.

Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling

[J]. Philos. Mag., 2012, 92(16): 2048

DOI      URL     [本文引用: 1]

Oka H, Watanabe M, Kinoshita H, et al.

In situ observation of damage structure in ODS austenitic steel during electron irradiation

[J]. J. Nucl. Mater., 2011, 417(1-3): 279

DOI      URL     [本文引用: 1]

Brimbal D, Décamps B, Barbu A, et al.

Dual-beam irradiation of α-iron: Heterogeneous bubble formation on dislocation loops

[J]. J. Nucl. Mater., 2011, 418(1-3): 313

DOI      URL     [本文引用: 1]

Evans J H.

The role of implanted gas and lateral stress in blister formation mechanisms

[J]. J. Nucl. Mater., 1978, 76-77: 228

DOI      URL     [本文引用: 1]

Toloczko M B, Garner F A, Voyevodin V N, et al.

Induced swelling of ODS ferritic alloy MA957 tubing to 500 DPA

[J]. J. Nucl. Mater., 2014, 453: 323

DOI      URL     [本文引用: 1]

Fave L, Pouchon M A, Döbeli M, et al.

Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels

[J]. J. Nucl. Mater., 2014, 445(1-3): 235

DOI      URL     [本文引用: 1]

Nix W D, Gao H.

Indentation size effects in crystalline materials: A law for strain gradient plasticity

[J]. J. Mech. Phys. Solids, 1998, 46(3): 411

DOI      URL     [本文引用: 1]

Kiener D, Minor A M, Anderoglu O, et al.

Application of small-scale testing for investigation of ion-beam-irradiated materials

[J]. J. Mater. Res., 2012, 27(21): 2724

DOI      URL     [本文引用: 1]

Kasada R, Takayama Y, Yabuuchi K, et al.

A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques

[J]. Fusion Eng. Des., 2011, 86(9-11): 2658

DOI      URL     [本文引用: 1]

Yabuuchi K, Saito M, Kasada R, et al.

Neutron irradiation hardening and microstructure changes in Fe-Mn binary alloys

[J]. J. Nucl. Mater., 2011, 414(3): 498

DOI      URL     [本文引用: 1]

/